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Abstract 
Unlike roads, shipping lanes are not carved in stone. Their size, boundaries and 
content vary over space and time, under the influence of trade and carrier pat-
terns, but also infrastructure investments, climate change, political developments 
and other complex events. Today we only have a vague understanding of the 
specific routes vessels follow when travelling between ports, which is an essen-
tial metric for calculating any valid maritime statistics and indicators (e.g trade 
indicators, emissions and others). Whilst in the past though, maritime surveil-
lance had suffered from a lack of data, current tracking technology has trans-
formed the problem into one of an overabundance of information, as huge 
amounts of vessel tracking data are slowly becoming available, mostly due to the 
Automatic Identification System (AIS). Due to the volume of this data, traditional 
data mining and machine learning approaches are challenged when called upon 
to decipher the complexity of these environments. In this work, our aim is to 
transform billions of records of spatiotemporal (AIS) data into information for 
understanding the patterns of global trade by adopting distributed processing ap-
proaches. We describe a four-step approach, which is based on the MapReduce 
paradigm, and demonstrate its validity in real world conditions.   

Keywords: Big Spatiotempotal Data, AIS, global shipping routes, K-Means 
Clustering, Apache Spark 

1 Introduction 

Since ancient times, trade has been conducted mostly by sea. Captains of their times 
sought out the safest, but also fastest routes connecting major trading sea ports. As early 
as 515BC, the sailor Scylax, made the first recording of the Mediterranean voyages or 
sailing instructions, which described safe passages between Mediterranean ports (later 
known as Hellenic Periploi), listing ports and coastal landmarks with approximate dis-
tances and routes between them. Throughout history, vessels have regularly set their 
shipping courses so as to take advantage of the prevailing winds and ocean currents, 
leading to the definition of major shipping trade routes, which are mostly in use until 
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today. Such popular trade routes include the routes crossing the Pacific Ocean, the At-
lantic Ocean routes and the Indian ocean routes, but unlike roads, these shipping routes 
are not carved in stone. The size of the corridor, its content and connections, can vary 
greatly over space and time, under the influence of trade and carrier patterns, but also 
due to infrastructure investments, climate change, political events and other complex 
international events. For instance, global warming is having a major effect on shipping 
routes; as new routes such as the Arctic Ocean shipping route north of Russia (which 
has cut thousands of miles off the journey from China to the European ports)  are emerg-
ing [1], while icebergs are disrupting the traditional shipping lanes off the Canadian 
coast [2]. Similarly, investments in port terminals or canal expansions have widespread 
effects on routes and trading patterns; such as the recent expansion of the Panama Ca-
nal, which influenced a range of stakeholders regarding shipping rates, peripheral port 
capacity and port investments.  

The importance of a well-developed understanding of the maritime traffic patterns 
and trade routes is critical to all seafarers and stakeholders. From a security perspective, 
it is necessary for understanding areas of high congestion, so that smaller vessels can 
avoid collisions with bigger ships. Moreover, an understanding of vessel patterns at 
scale can assist in the identification of anomalous behaviors and help predict the future 
location of vessels. Additionally, by combining ship routes with a model to estimate 
the emission of vessels (which depends on travel distance, speed, draught, weather con-
ditions and characteristics of the vessel itself), emissions of e.g. CO2 and NOx can be 
estimated per ship and per national territory [3]. From an economic side, stakeholders 
selecting to deploy a ship on a particular route need to find the optimal mix between a 
number of variables such as the shortest path between two ports, cost of route, expected 
congestion, travel time, size of vessel and capacity and many more. According to the 
findings of a recent Eurostat funded project, current problems in methods of calculating 
official maritime statistics include, (i) Distance travelled per ship is now based on an 
inaccurate average distance matrix for ports, (ii) Missing Information on travel routes 
for goods to estimate unit prices for transit trade statistics [3].  

While in the past, maritime surveillance had suffered from a lack of data, current 
tracking technology has transformed the problem into one of an overabundance of in-
formation. Progressively huge amounts of structured and unstructured data, tracking 
vessels during their voyages across the seas, are becoming available, mostly due to the 
Automatic Identification System (AIS) that vessels of specific categories are required 
to carry. The AIS is a collaborative, self-reporting system that allows marine vessels to 
broadcast their information to nearby vessels and on-ground base stations. Vessels 
equipped with AIS transceivers periodically broadcast messages that include the vessel 
identifying information, characteristics, and destination together with other information 
coming from on-board equipment, such as current location, speed, and heading. AIS 
data slowly becoming available, provides almost global coverage as data collection 
methods are not restricted to a single country or continent, providing an opportunity for 
in depth analysis of patterns at a global scale which was previously unavailable [3].   

However, current Information & Communication Technology (ICT) and traditional 
data mining approaches are challenged when called upon to decipher the complexity of 
these environments and produce actionable intelligence. AIS geospatial data-sets are 
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very large in size, containing billions of records, and skewed, as specific regions, can 
contain substantially more data than others, making processing and storage with con-
ventional methods highly challenging. As such traditional techniques and technologies 
have proven incapable of dealing with such volumes of loosely structured spatio-tem-
poral data.  

In our approach, we exploit a massive volume of historical AIS data to estimate trade 
routes in a data-driven way, with no reliance on external sources of information. We 
present a four phased approach which is based on the MapReduce distributed program-
ming paradigm, and demonstrate its effectiveness and validity in real world conditions.   

 
Our work presents novelties on three fronts: 

• Distributed computation: We present an architectural prototype which is 
validated by efficiently processing billions of AIS message (>500Gb) 
within a few hours. To the best of our knowledge no previous work has 
successfully analyzed AIS datasets of this size and coverage within the 
time scale of our solution (less than 3 hours). 

• Algorithmic Accuracy: We discuss our algorithmic approach to generat-
ing accurate trade routes by overcoming many of the known accuracy is-
sues of AIS in a distributed fashion by adopting a MapReduce approach.  

• Domain Specific: We uncover global maritime trade routes which can be 
used as a method of anomaly detection, investigation but also understand-
ing and predicting variations in trade patterns and the effect of events.  

The rest of the manuscript is organized as follows: Section 2 shortly presents previ-
ous work in this domain, while Section 3 describes our approach and Section 4 presents 
the preliminary results. Finally, section 5 presents the conclusion and briefly outlines 
shortcoming of this work and future improvements.  

2 Related Work 

AIS data has been used as valid method for extracting valuable information regard-
ing vessel behavior, operational patterns and performance statistics for a number of 
years now. As Tichavska, Cabrera, Tovar and Arana point out, AIS data has been used 
for a variety of applications including, optimization of radio propagation channel tech-
niques, real-time statistical processing of traffic information, improving ship traffic 
management and operations, sustainable transport solutions and many more [4]. Spe-
cifically, for route definition and motion pattern extraction, AIS is considered a valid 
source of data, used as a framework for trajectory forecasting and anomaly detection. 
Most published works can be categorized per the methods the authors follow which are 
either (i) grid based or (ii) methods of using vectorial representations of traffic. In (i) 
grid based approaches, the area of coverage is split into cells which are characterized 
by the motion properties of the crossing vessels to create a spatial grid . In the second 
category, vessel trajectories are modeled as a set of connected waypoints. Thus, vessel 
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motions in large areas (e.g., at a global scale) can be managed thanks to the high com-
pactness of the waypoint representation [5][6].  

Towards this direction, in their recent work, Ristic, La Scala, Morelande  and Gordon 
perform statistical analysis of vessel motion patterns to extract motion patterns which 
are then used to construct the corresponding motion anomaly detectors using adaptive 
kernel density estimation [7]. Mazzarella, Arguedas, & Vespe apply a Bayesian vessel 
prediction algorithm based on a Particle Filter (PF) on AIS data [8]. Zhang, Goerlandt, 
Kujala, Wang, & Nikitakos apply hierarchical and other clustering methods to learn the 
typical vessel sailing pattern within the waters of Xiamen Bay and Chengsanjiao, China 
[9]. Pallotta, Vespe and Bryan, present the TREAD (Traffic Route Extraction and 
Anomaly Detection) methodology, which relies on the DBSCAN algorithm for auto-
matically detecting anomalies and projecting current trajectories and patterns into the 
future[10].  

As the amount of available AIS data grows to massive scales though, researchers are 
realising that computational techniques must also contend with acquiring, storing, and 
processing the data. Applying traditional techniques to AIS data processing can lead to 
processing times of several days, if applied to global data sets of considerable size. In 
addition to this, many traditional approaches assume that the underlying data distribu-
tion is uniform and spatially continuous. This is not the case for global AIS data, as it 
is often to have large geographical coverage gaps, message collisions or erroneous mes-
sages especially when processing large areas [11,12]. This problem is mostly evident 
when dealing with extended geographical areas and “big” datasets. In their majority, 
previous research efforts have focused on limited geographical areas (e.g. a specific 
coastal area or sea port) and smaller datasets (e.g. several thousands of AIS messages/ 
GBs) [13–15], often overstepping the problems AIS data quality altogether.  In their 
work [5], authors present a two-step method to achieve a balance between computa-
tional time and performance; first performing data simplification by applying the Doug-
las-Peucker(DP) algorithm before processing the simplified trajectories with Kernel 
Density Estimation.  

Grid-based methods have been considered effective only for small area surveillance 
and the computational burden was regarded as its limitation when increasing the 
scale[10]. Therefore a “vectorial” representation of traffic was proposed [16] to allow 
implementation at a global scale, including waypoint objects and route objects. How-
ever, these methods had only been implemented in limited geographical areas (e.g. a 
200 × 160 km area in the North Adriatic Sea and similar), and limited information was 
given about performance [16,17]. However, in their work Lin Wu, Yongjun Xu, Qi 
Wang, Fei Wang and Zhiwei Xu, demonstrate the ability of a grid-based method for 
computing shipping density, fast enough to be performed at a global scale (less than 56 
hours). In this work it took 56 hours to produce all the global monthly ship density, 
traffic density and AIS receiving frequency maps, from August 2012 to April 2015; 33 
months of data[17].  

To date, very few works, apply the advancements that have been made on the big 
data front to AIS data processing. In 2008, the MapReduce programming approach was 
described by Google engineers, in which data-parallel computations are executed on 
clusters of unreliable machines by systems that automatically provide locality-aware 
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scheduling, fault tolerance, and load balancing while and shortly after in 2011, the Ha-
doop implementation by Yahoo’s engineers was made publicly available under an 
Apache License [10][18]. Although certainly not a panacea[19], Hadoop introduced 
millions of programmers and scientists to parallel and distributed computation, starting 
the “big data wave”. In their work [20],Wang et al. attempt to tackle the big data issue 
caused by the AIS data for anomaly detection purposes. They implement a two-step 
process, where they firstly use an unsupervised technique, based upon the Density-
Based Spatial Clustering of Applications with Noise considering Speed and Direction 
(DBSCAN-SD) incorporating non- spatial attributes, such as speed and direction, to 
label normal and abnormal position points of vessels based on the raw AIS data. Sec-
ondly, they train a supervised learning algorithm designed with the MapReduce para-
digm running on Hadoop using the labelled data generated in from the first step. The 
authors support that the distributed approach is capable of outperforming the promise 
of traditional GIS applications.  

Following Hadoop’s success numerous frameworks and open source tools appear on 
the Big Data ecosystem. Apache Spark, originally designed by researchers at the Uni-
versity of Berkeley, was developed in response to limitations in the MapReduce/Ha-
doop cluster computing paradigm, which forces a particular linear dataflow structure 
on distributed programs (acyclic data flow model). Many iterative machine learning 
algorithms, as well as interactive data analysis tools, reuse a working set of data across 
multiple parallel operations. Spark processes data in-memory and has been shown to 
be capable of outperforming Hadoop by 10x in iterative machine learning work-
loads[18]. In our previous work, we confirmed the potential benefits of  applying such 
techniques to large AIS data processing [21,22]. In [21,23] we presented an adaptation 
of the well-known KDE algorithm to the map-reduce paradigm to estimate a seaports 
extended area of operation from AIS data. This work is complementary, in that it ad-
dresses the problem of estimating global trade routes in an adaptive, scalable, and un-
supervised way, based on k-means clustering applied in a distributed fashion. Similarly, 
[24] Salmon and Ray present their work on designing a hybrid approach based on the 
Lambda architecture [19] for both real-time and archived data approaches to processing 
maritime traffic data.  

3 Approach 

 As described in the previous sections, the aim of this work is to calculate the global 
trade routes from large amounts of AIS data. Out of the 64 different types of AIS mes-
sages that can be broadcast by AIS transceivers (as defined by the ITU 1371-4 stand-
ard), our work focuses on the 6 most relevant ones, which account for approximately 
90% of AIS typical scenarios [19]. Types 1, 2, 3, 18, and 19 are position reports, which 
include latitude, longitude, speed-over-ground (SOG), course-over-ground (COG), and 
other fields related to ship movement; type 5 messages contain static-and voyage infor-
mation, which includes the IMO identifier, radio call sign, name, ship dimensions, ship 
and cargo types. In all messages, each vessel is identified by its Marine Mobile Service 
Identifier (MMSI) number. Data is received through the MarineTraffic system and for 
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the purposes of this work we use a dataset of approximately 5 billion messages (i.e., 
525 GB) recorded from January to December 2016 (Table 1). In the rest of this section 
we present the methodology followed to transform the raw data collected into mean-
ingful information and thus useful for data analysis. We provide a detailed analysis of 
each step of the approach and explain thoroughly the effect our actions had to the con-
sidered dataset. 
 
 

Dataset Statistics 
Time Period January-December 2016 
Positions count >5 Billion 
Port calls count >3 Million 
Number of unique vessels >200K 
Ports covered in dataset >3K 

Table 1. Original Dataset Statistics 

3.1.1 Distributed Processing  

For the distributed processing tasks, we rely on a HDInsight Azure Spark (2.1.0 ver-
sion) cluster made up by: 6 worker nodes (D4v2 Azure nodes), each one equipped with 
8 processing cores and 28 GB RAM; and 2 head nodes (D12 v2 Azure nodes), each one 
equipped with 4 processing cores and 28 GB RAM, summing up to a total of 56 com-
puting cores and 224 GB RAM. This setup has been sufficient to cover the processing 
requirements of all the complex computations of our methodology. 

  

 
Figure 1. Four step distributed approach  

3.1.2 Step 1: Trajectory Data Cleaning And Preprocessing 

AIS messages do not provide any trustworthy voyage information with respect to 
departure and destination ports. In fact, the only relevant data collected from AIS are 
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type 5 messages which include the destination port information. However, this is man-
ually given by the ship’s crew and prone to errors, inconsistencies etc. Thus, it is fun-
damental to discover such knowledge (i.e., departure and destination ports) from the 
AIS positional data to perform route analysis. We algorithmically, calculate port desti-
nation and port departure for each AIS message on spark.  The purpose of such corre-
lation is to assign accurately the departure port, the destination port based on the 
timestamp of each AIS message and the departure time and arrival time respectively. 
In addition to route assignment, for each message we compute the time elapsed (meas-
ured in minutes) since the vessel’s departure based on the reported timestamps (i.e. 
from AIS messages). The time elapsed field enables us to include the time dimension 
in our analysis on AIS messages and group them into time-aligned routes with the same 
<departure, destination> port and vessel type. 

We focus our work only on AIS messages originating from cargo and tanker vessels, 
as we are not interested in smaller vessels such as fishing boats, tugs, etc. that do not 
follow a repetitive pattern and may not be representative of global trade routes. Simi-
larly, for this study, we filter out AIS messages originating from passenger vessels as 
these follow different patterns e.g. visiting different ports than cargo vessels and mes-
sages with recorded speed less than 0.5 knots which is considered as the lower bound 
for vessels moving underway using their engines. The resulting dataset of this prepro-
cessing steps results in approximately 1 billion enriched AIS messages and approxi-
mately 28K distinct vessels. 

3.1.3 Step 2: Semantic Data Enrichment and Classification (Distributed- Map 
Phase):  

The preprocessing step uses a dataset of approximately 2*104 ports resulting in a large 
number of port-to-port combinations (i.e., practically almost any port may be connected 
with any other port in the world resulting in 4*108 combinations), which are further 
increased as we take into account also the ship-type. However, it makes sense to apply 
any algorithmic approach on data on each route separately. Thus, in order to take ad-
vantage of the parallelization ability of spark we map each enriched message to a key-
value pair. The key uniquely identifies the route per vessel type and it is generated as 
the concatenated unique identifier of departure – destination pair and the vessel type, 
while the value is the enriched message itself.  

3.1.4 Step 3: Knowledge Extraction from Trajectories (Distributed- Reduce 
phase):  

Up to this point we have enriched each record of our dataset with additional voyage 
related information. To prepare our data for further processing, we organize all records 
on lists based on the key defined in the map phase. This is performed by a reduce-by-
key procedure and produces a set of key-valued pairs organized in a set of rows equal 
to the distinct number of keys (i.e., 368473 unique routes per ship type). Each reduced 
set contains on average 2000 points per key, which can be further processed by a single 
node. Given that at this time, spark does not support nested map-reduce processes, we 
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select to process multiple routes simultaneously by distributing their keys to multiple 
nodes, instead of splitting each set computation to multiple nodes. In order to capture a 
unique route for all the points included in each set we perform the well-known k-means 
clustering technique using WEKA, an open source software collection of machine 
learning algorithms for data mining tasks. The features selected for the k-means clus-
tering are the following: 

• latitude,	
• longitude,	
• relative timestamp.	

This enables our solution to detect clusters of vessels’ positions based on both location 
and time with respect to the departure timestamp, enhancing route perception with av-
erage elapsed time (or within a time range) from departure for vessels of the same type 
with the same route that sail in close by trajectories. 
The number of clusters per route K is selected dynamically using the formula below.  

𝐾 = max min (
)*

, 𝑐𝑚𝑎𝑥 , 1 		

where, 
• cmax is the maximum number of clusters (set to 100 for our evaluation),	
• N is the #points per route.	

The arbitrary selection of the maximum number of centroids cmax is equal to 100. 
The cmax selection is based on the degree of compression of information that we would 
like to achieve, while preserving some of its original granularity for the global dataset. 
Finally, before moving to the next step, we assign to each centroid the number of dis-
tinct vessels that have at least one point within the cluster. 

3.1.5 Step 4: Discovering Alternative Routes  

During the previous steps, it was assumed that same vessel types sailing on the same 
route will follow similar trajectories. However, this is not always accurate, as various 
factors such as weather conditions, draught, etc. may vastly differentiate the vessel’s 
course. In such cases we observed that the outcome of the clustering phase suffered 
from fluctuating events and the produced trajectories had continuous changes of ves-
sel’s course. In most cases the actual data indicated the existence of (at least) two dif-
ferent courses for the same route. To identify these courses, we applied a trajectory 
splitting algorithm based on the following predefined set of rules  
We examine all route points using a three points sliding observation window. Each 
point is assigned to a different course if any of the empirical rules evaluated in the 
following algorithm is valid.  
For each course of a route detected do the following: 

For each three sequential points pi-1, pi, pi+1 evaluate the following rules: 
1. #𝑣𝑒𝑠𝑠𝑒𝑙𝑠	𝑖𝑛	𝑝:;) = 1	||		#𝑣𝑒𝑠𝑠𝑒𝑙𝑠	𝑖𝑛	𝑝: = 1	 
2. 𝐷:;),: + 	𝐷:,:?) > 	2 ∗ 	𝐷:;),:?) 
3. 𝐷:;),: > 𝐷CD 
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4. 𝑇:;),: > 𝑇CD 
5. 𝑉:;),: > 𝑉CD	 

where, 
• Di,j is the distance between pi, pj	
• Ti,j is the time variance between pi, pj	
• Vi,j is the vessel’s speed so as to reach pj from pi 
• Dth is the distance threshold set to 1000km, which is a relaxed con-

straint for positional data received from two consecutive AIS mes-
sages. 

• Tth is the time threshold that equals to 24h, which is a relaxed thresh-
old compared to the AIS message received frequency. 

• Vth is the speed threshold, which is set to 40 knots, as cargo ships and 
tankers typically have speed less than 35 knots.   

Although multiple sailing courses are linked with the same route, they are completely 
different paths from departure port to destination port, and thus, when visualizing re-
sults we treat each sailing course as a different route. In the following section we ana-
lyze the evaluation results of our methodology and provide insights on some interesting 
new routes such as China to east USA. 

4 Results 

In this section, we present some preliminary results of the approach described in the 
previous section. All results presented below have been produced using the cluster 
setup presented in section 3.1.1 and the execution times correspond to the results of the 
spark processing with 24 executors having two cores each and kryo serializer option 
enabled to minimize the serialization cost.  

As previously discussed in Section 3 our approach is a four stepped approach. In the 
preprocess step, we parsed the original dataset of 5 billion records and filtered out the 
messages that do not originate from cargo or tanker vessels based on the AIS vessel 
type recorded. Then, positional data were combined with recorded departures and des-
tinations to create a smaller dataset with enriched data of 0.79 billion records. Pro-
cessing efforts were split into 5 jobs, 12 stages and 3727 tasks, having a total computa-
tional cost of 1.3 hours. The map phase was executed through 1 job, 1 stage and 267 
tasks and lasted almost 10 minutes. The reduce phase including the splitting process 
was executed in 1 jobs, 1 stage and 267 tasks and had a 10 minutes computational cost. 
The entire process from the initial import of raw data to end results extraction lasted 
approximately two hours.  
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Figure 2. Routes extracted for cargo vessels for 2016. 

 
The resulting dataset was stored in a single 850MB csv file including information 

for all the vessels. The total number of routes detected, after splitting was 440,854 rep-
resented with 10,847,328 points (Figure 2). The result represents a significant part of 
information in terms of routes detected, i.e. the number of routes detected is greater 
than the distinct number of routes per vessel type, while the compression rate is 73:1 in 
terms of positions. It should be noted that since the dataset used is recorded from Jan-
uary to December 2016, some vessel routes may start or end in the middle of the sea 
because the ship’s voyage is not entirely in this period (i.e. ship’s voyage may start 
before 2016, or may end in 2017). 

Through our approach, we have been able to control the degree of compression of 
the resulting dataset based on the selection of K, being capable to create visualizations 
of sets of global routes. Regarding the domain, it is interesting to view that we can 
validate most popular trade routes with accuracy and new routes are uncovered, such 
as the artic route above Russia and new routes that pass over North America to link east 
USA with China have been detected (Figure 3). Finally, the addition of time in the 
clustering process for K-means introduces an average voyage time estimation on each 
centroid detected, this estimate could be used a baseline for future works on optimal 
route selection for the maritime industry.  
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Figure 3. Overview of the routes connection some of the top 50 ports around the globe. 

5 Conclusion and Future Work 

This article focused on the challenges of analyzing huge amounts of vessel tracking 
data produced through the AIS. The novelty of the method is in the direction of adopting 
a map reduce approach to distribute the computational burden across a cluster of com-
modity machines to perform the computation in approximately 2 hours’ time. Prelimi-
nary results presented in the previous section confirm the validity of the adopted ap-
proach. Future work, will be focused on improvements of the algorithmic approach to 
improve the accuracy of the identified routes.  
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