
Introducing ADegree: anonymisation of Social
Networks through Constraint Programming

Sergei Solonets, Victor Drobny, Victor Rivera, and JooYoung Lee

Innopolis University, Innopolis, Russia,
Institute of Technologies and Software Development

{s.solonets, v.drobnyy, v.rivera, j.lee}@innopolis.ru,

Abstract. With the rapid growth of Online Social Networks (OSNs)
and the information involved in them, research studies concerning OSNs,
as well as the foundation of businesses, have become popular. Privacy on
OSNs is typically protected by anonymisation methods. Current methods
are not sufficient to ensure privacy and they impose restrictions on the
network making it not suitable for research studies. This paper introduces
an approach to find an optimal anonymous graph under user-defined
metrics using Constraint Programming, a technique that provides well-
tested and optimised engine for combinatorial problems. The approach
finds a good trade-off between protection of sensitive data and quality
of the information represented by the network.

Keywords: Anonymisation; Online Social Networks; Constraint Pro-
gramming;

1 Introduction

Social networks (SNs) are social structures made up of individuals (or organisa-
tions) that are connected by one or more types of interdependency. Individuals
are called “nodes” and connections are called “edges”. There are several types
of SNs; for example, in LinkedIn1 (an online network of professionals) every
link between two users specifies a professional relationship between them [10].
In Facebook2 or VK3 links correspond to friendship. Each SN shares informa-
tion according to the type of the network. Given the rapid growing of SN and
the information involved in the networks, several research studies have been
made [7, 9, 11,12,14,16].

The information carried out by Social Networks is of paramount importance
in domains such as marketing [8]. Network owners often share this information
with advertising partners and other third parties. Such practice is the foundation
of the business case for many social network owners, that have made the analysis
of social networks profitable. However, these kind of marketing makes the own-
ers of social networks like Facebook and Twitter (http://www. twitter.com)

1 www.linkedin.com
2 www.facebook.com
3 www.vk.com

increase the sharing of potentially sensitive information about users and their
relationships. Owners are compelled by law to respect the privacy policies of
their users. This privacy is typically protected by anonymisation.

Anonymisation methods are used to assure privacy policies of the users of
SN (i.e., sensitive information). The common intuitive method is to remove the
identity of each node in the graph, replacing it with a random identification
number. However, Backstrom et. al. [1] have shown that this method is not
adequate for preserving the privacy of nodes. Specifically, the authors show that
in such an anonymised network, there exists an adversary who can identify target
individuals and the link structure between them.

There have been some other attempts to come up with more advanced
anonymisation approaches. As an example, Liu and Terzi [13] consider node
re-identification assuming that the adversaries’ auxiliary information consists
only of node degrees. Campan and Truta [3] propose metrics for the informa-
tion loss caused by edge addition and deletion and apply k-anonymity to node
attributes as well as neighbourhood structure, among others [6, 20].

Despite the fact that there exist many anonymisation methods, those con-
cerning to remove private information of nodes and those that change the struc-
ture of the the network (e.g., based on k-degree anonymity) are not sufficient for
privacy when dealing with social networks [1,15]: the fundamental issue when re-
moving private information of nodes (e.g. names, addresses) is that even though
there are millions of people participating in a social network, each node has a
relatively unique relationship with his/her neighbours. This uniqueness can be
exploited in order to identify the participants in the network; the fundamen-
tal issue when changing the structure of the graph (e.g. based on k-anonymity)
is that they impose arbitrary restrictions on the network and make arbitrary
assumptions about the properties of the given graph [15].

We consider a scenario where the owner of a social network wants to re-
lease the underlying SN graph preserving the privacy of its users. This paper
introduces the formal definition of an anonymisation approach using Constraint
Programming (CP) in its implementation. Our approach finds out a network
that respects the privacy polices, hides the private information, makes it harder
to de-anonymise the network and, as opposed to current anonymisation ap-
proaches, conserves the properties of the network as much as possible. On the
other hand, [13] only considers the degree attack scenario. Due to the nature
of information carried out by the Social Networks, only k-automorphism con-
straint can guarantee privacy under any type of attack [21]. However this kind
of constraint is very heavy and as a consequence leads to a huge information
loss. Therefore, to find a network as close as possible to the original, we need to
study possible scenario attacks in every particular case.

2 Preliminaries

2.1 Constraint Programming

Constraint programming (CP) [17] is a paradigm for solving combinatorial search
problems that draws on a wide range of techniques. CP is currently applied
with success to many domains, such as scheduling, planning, vehicle routing,
configuration, networks, and bioinformatics. The focus of CP is on reducing the
search space by pruning values that cannot appear in any feasible or optimal
solution. Constraints are relations, and a constraint satisfaction problem (CSP)
states which relations should hold among the given decision variables. Constraint
solvers take a real-world problem and represent in terms of decision variables and
constraints to find an assignment to all the variables that satisfies the constraints.
To get a solution of a CSP, one uses the following generic algorithm:

1. Use propagation to prune the domains of the variables. This step is executed
by propagators. Propagators are processes that filter the domains of a set
of finite domain variables according to the semantics of the constraint they
implement (also called pruning rules). Propagators share a common store
which contains the information that is currently known about the variables
of the problem. As soon as a propagator is able to infer new information
from the store, it adds this new information in the store. This iterative steps
stop when the propagator(s) reaches a fixed point, i.e., when it cannot prune
more values.

2. When the propagators reach a fix point, we may have three possible situa-
tions:
– all the variables are bound to a value. In this case the search stops since

a solution has been obtained.
– there are some variables that are yet to be determined. In this case, we

split the CSP into new problems according to branch strategies, gener-
ating new constraints. Then the step 1 is triggered, we wait until prop-
agators get stable to continue.

– there is at least one variable whose domain is empty. In this case, we go
back to the previous step.

2.2 Social Networks as Graphs

A social network can be seen as a social structure represented by a graph where
nodes represent actors of the social network and edges represent a interdepen-
dency among those actors. Edges can represent specific types of interdependency,
such as friendship, kinship, common interest, financial exchange, dislike, and so
forth. The following is the definition of a Social Network which will be used
throughout this paper.

Definition 1 (Social Network). A social network SN is a directed/undirected
graph G = (V,E), containing

1. a set of attributes for each node in V and
2. a set of attributes for each edge in E.

Typically, Social Network analysers are interested in sub-populations of social
graphs or sub-links of the graphs. For instance, demographic studies might be
interested in relationships between people of the same gender in ages of a specific
range. This categorization of graphs is represented by Restricted Graphs:

Definition 2. Restricted Graph: Let G(V,E) be a graph. G−〈V −, E−〉 is a
restricted graph with V − ⊆ V and E− ⊆ E

An interesting property of data anonymisation is k-anonymity introduced
in [19]. k-anonymity solves the problem: “Given person-specific field-structured
data, produce a release of the data with scientific guarantees that the individuals
who are the subjects of the data cannot be re-identified while the data remain
practically useful.” Liu et al. [13] introduced the concept of k-degree anonymous
graphs. The following is the formal definition as used in the paper. We first
define a degree sequence for the graph.

Proposition 1. Degree sequence: Let dG be sequence. dG is a degree se-
quence of graph G(V,E) iff is a sequence of size n = |V | such that dG[i] is the
degree of the i-th node of G.

The definition of k-anonymity for the degree sequence is as follows.

Proposition 2. k-degree anonymous: A degree sequence dG is k-anonymous,
if every distinct value in dG appears at least k − 1 times. That is

∀i ∈ dG⇒ occur(i, dG) ≥ k,

where occur(v, s) is the number of occurrences of v in sequence s.

Finally, we state that

Definition 3. a k-degree anonymous graph has associated a k-degree anony-
mous sequence.

3 Related Work

Privacy on social networks is typically protected by anonymisation methods. An
initial anonymisation attempt was to remove sensitive information of the nodes,
such as names, addresses and phone numbers. However, this kind of method
is easy to de-anonymise by studying the structure of the network. There have
been several anonymisation methods that modify the initial structure of graphs
that represent Social Networks to avoid users being uncovered by analysing the
structure of their connections. Liu and Terzi anonymise the network by making
it k-degree anonymous [13]. A network is k-degree anonymous if for every node

Fig. 1. Liu et al. approach.

v, there exist at least k − 1 other nodes in the network with the same degree as
v. Figure 1 shows an example of such anonymisation.

Campan and Truta suggest anonymising the network by applying the con-
cept of edge generalizing on the corresponding graph [3]. Edge generalisation
is implemented by clustering nodes. Every cluster is replaced with a new node
whose neighbours are the union of the neighbours of the nodes in the cluster.
Each new node is associated with a pair of integers (#n,#e) representing the
number of nodes and the number of edges inside the cluster. These pairs of inte-
gers are then used to approximate the interconnection of those nodes inside the
cluster without revealing information about how two nodes in separate clusters
are interconnected. Figure 2 shows an example of such anonymisation. Notice
that in each case the interconnection of the nodes inside every cluster can be
inferred. For instances, there is only one instance of connecting 3 nodes with 3
edges. However, the connections between nodes of different clusters are hidden
by the anonymisation process.

Fig. 2. Campan et al. approach.

Bhagat et al anonymise the network by associating each node with a list of
possible ids [2]. Each list contains the real id of the node. The sensitive informa-
tion is therefore protected, since, in general, it is not possible to infer whether a
node is present in the network and whether there is a connection between two
nodes. Bhagat et al. shows, however, that these lists of ids need to be carefully
computed since it is not impossible to unmask individuals and connections. Fig-

ure 3 shows an example of such anonymisation. Notice that in every case the id
of the node has been replaced with a list of possible ids containing the real one.

Fig. 3. Bhagat et al. approach.

4 Anonymising Social Network: ADegree

ADegree is a constraint that is used to find an anonymised network that pro-
tects users’ sensitive information by ensuring k-degree anonymity, making the
reverse process (de-anonymisation) harder to achieve. The anonymised network
preserves the structure of the original network as much as possible. This struc-
ture is then preserved by defining the interest of the Social Network’s analyser.
Typically, Social Networks analysers are interested in subgraphs within the So-
cial Network. Section 4.1 defines a way to represent such interest and Section
4.2 formally defines the constraint for the anonymisation of Social Networks.

4.1 Query of Interest

The fundamental problem when altering the structure of a graph is that arbi-
trary restrictions are imposed on the network as well as arbitrary assumptions
are made about its properties. The problem is due to the ignorance on the utility
of anonymised graph. Companies dedicated to the study of social networks have
specific queries of interest. For example, ‘how many users are there in some spe-
cific sub-populations?’, ‘What are the patterns of interaction and friendships?’,
‘Which sub-populations are interacting?’. These kind of queries define the utility
of the network and can be used to determine how close an anonymised graph is
from the original one.

The following formalises the query of interest.

Definition 4. Query of Interest: A query of interest QI is a tuple 〈G,P, T, F 〉
where

G(V,E) is a graph (representing a Social Network);
P ⊆ P(V) is set of set of nodes;
T ⊆ P(label(E)) is set of set of labels.;
F ∈ {G−〈p, t〉 | p ∈ P ∧ t ∈ T}→ Z
where P is the power set of a set.

In Definition 4, P defines the different categories of ‘users’ (actors) that the
query is interested in. T defines the different categories of ‘labels’ that the query
is interested in. As an example, take the phone communication company AT&T
social network that represent people as nodes, phone calls between people as
edges and the duration of calls as edges’ labels. In a possible QI, P categorises
the set of user the company is interested in, e.g. teenagers and females over 50
years, and T categorises the set of labels, e.g. 3 to 15 minutes. F is a function
(defined by the user) that represents the closeness of G− to G.

4.2 ADegree

The constraint is defined as follows.

Definition 5. ADegree: Suppose G(V,E) and G′(V,E′) are graphs representing
social networks. Let QI = 〈G,P, T, F 〉 be the query of interest, and let k and v
be integers. The constraint ADegree holds iff

1. G′ is k-degree anonymous;
2. G′ is as close as possible to G∑

p∈P,t∈T
abs(F (G, p, t)− F (G′, p, t)) ≤ v;

where abs is the absolute value
3. if G′ is already k-degree anonymous, then G′ 6= G

The solution, G′, is a graph representing a social network that

– is an anonymised network with k-degree anonymity property that
• hides user sensitive information;
• makes it more difficult to de-anonymise the network.

– is as close as possible to the original which implies that the information has
fewer changes. Hence, any study performed on it will be significant.

5 Implementation of ADegree

We implemented ADegree in Gecode [5]. The implementation models the prob-
lem as a Constraint Satisfaction Problem (CSP). It finds an anonymised graph
from a given social network. The found graph protects sensitive information
whilst preserving the structure of the graph as much as possible. Gecode is a
powerful tool for solving CSPs. The idea behind Constraint Programming is to
define the model as a set of constraints over finite domain variables. Gecode
framework will prune variables’ domain until it finds a solution. A solution is
found whenever the domain of all variables in the model has been reduced to
a value. A user defines how to prune variables’ values by specifying branching
rules.

Part of previously described formal definitions are implemented in this study
since our current implementation does not take into account labelled graphs.
Subsection 5.2 is devoted to explain the possible implementations. Current im-
plementation of ADegree can be found in [18].

5.1 ADegree

When working with Constraint Programming, one needs to define the followings.

– finite domain variables;
– constraints to be satisfied by the value of the variables;
– branching rules and
– the search engine.

Finite domain variables: ADegree is a data structure that represents a k-
degree anonymous undirected-graph. ADegree is represented by a set of adjacent
nodes.

Constraints: The set of constraints that needs to be satisfied is that the re-
sulting graph is

cons1 : a super-graph of the input graph and
cons2 : k-degree anonymous,
cons3 : as close as possible to the input graph.

In order to ensure that cons1 holds it is necessary to add the following con-
straint.

– For every edge that is represented by pair of nodes (a, b), a is in an adjacent
set of b and b is in an adjacent set of a.

In order to ensure that cons2 holds we need to know that for every node there
is at least k − 1 nodes with the same amount of adjacent nodes. We introduced
a degree sequence variable and constraints are as following.

– The size of the degree sequence is the number of nodes in the graph.
– Each value in the degree sequence corresponds to the cardinality of the

corresponding adjacent set.
– For every value of degree there is at least k− 1 degrees with the same value.

Branches: It is important to define the branch strategy to be able to find a
solution in an acceptable time. For instance, choosing any branch strategy on
the edges of the graph and running Depth First Search (DFS) engine will yield
a solution. However, the search engine will try, for every possible super-graph,
to check whether it has a k-degree anonymous sequence or not. This approach
is feasible on small graphs but the time complexity will increase significantly as
the graph increase its size.

In order to increase performance several methods can be applied. The first
technique is to optimise the constraints. Gecode can cut off the search space
by defining stronger conditions. One way to define such stronger constraints is
to define a sorted degree sequence as realizable. That is, there exists a simple
graph whose nodes have precisely the sorted degree sequence. Erdös and Gallai

described the necessary and sufficient condition for a degree sequence to be
realizable [4]. These conditions are n inequalities on sorted degree sequence. It
can be achieved by using sorted versions of numerical arrays provided by Gecode.

For every l ∈ [1, n− 1]

l∑
i=1

di ≤ l(l − 1) +

n∑
i=l+1

min(l, di)

where di is i-th element in a sorted degree sequence. min(l, di) ≤ di we can
transform it into weaker but faster condition:

l∑
i=1

di ≤ l(l − 1) +

n∑
i=l+1

di

This solution has an implicit advantage. To find the existence of k same
degree values in a sorted degree sequence, it is enough to search only in k −
1 surrounding, not in the whole sequence. Such constraints are much lighter
because they are from 2k − 1 variables and not from n.

All previous improvements deal only with degree sequence and with its sorted
version but not with edges. Our implementation does not take into account
pruning of edges. Introducing edges to the branching strategy will slow down the
execution if the branch strategy is not carefully defined. Section 5.2 proposes how
to solve the problem. The main problem is that the search engine checks several
graphs with the same degree sequence even if they are not k-degree anonymous.
Hence, the branch strategy needs to be defined so that it branches first on the
degree sequence (most of the constraints make restrictions on a degree sequence)
rather than on the edges. This will make the search run faster. Gecode allows
users to define any order of search. The following is the ideal searching order:

1. Branch on sorted degree sequence
2. Branch on degree sequence
3. Branch on edges

Search: Gecode provides two search engines: Depth First Search (DFS) and
Branch and Bound (BAB). DFS gives a solution which satisfies all the constrains
but it cannot compare solutions to provide the best one. BAB is designed to give
the best solution. For graph anonymisation, the idea is to find a graph that is
as close as possible to the initial input. This gives a cost function that can be
used to compare results given by the search engine. The cost function is defined
by a user and corresponds to the Query of Interest (QI). Once the QI is defined,
BAB gives some solution in increasing (decreasing) order until it achieves the
best one.

Depending on the cost function, different strategies of searching within one
structure can give different execution times. For example, if the cost function is
the sum of the degree sequence and its goal is to minimize the sum (e.g. to take
the least possible value of a degree first), the solution can be found faster.

5.2 Towards edge labelling

This section is devoted to express how to improve the implementation in order
to consider labelling. The main idea is to transform this new problem into the
previous one by defining the degree sequence as a tuple of degrees for every
label. We need to be sure that every node appears either 0 or at least k times in
the graph. If there are m labels, each degree is represented by (d1, d2, . . . , dm)
where di is the degree of i-th label of node. This tuple can be written as deg =
d1 +d2K +d3K

2 + ...+dmKm−1. Where K is a large integer that is bigger than
maximum possible degree value. For example, if we assume that there can be
only one edge with same label from node a to b, then K can be n− 1 (where n
is the length of the sequence). By doing this transformation we uniquely assign
an integer number to any possible combination of a degree sequence.

Applying this transformation we can now anonymise undirected graphs with
labelled edges. Now we can transform this variation to the directed graph case.
The only thing needed is to assign different labels to the beginning of the edge
and to its end.

6 Using ADegree

Consider the graph G(V,E) depicted in Figure 4. The graph shows an excerpt
of a social network representing a AT&T network. Nodes represent users, arcs
represent calls made between two users, and labels represent time of the calls.

A typical scenario in which AT&T might be interested is studying the graph
to come up with better call plans targeting a group of users. The scenario also
assumes that AT&T outsources this study (necessity of anonymised the graph).
The query of interest (i.e. QI = 〈G,P, T, F 〉) is to find out what is the average
number of calls made by a type of user (e.g., teenagers) during a period of time
(e.g., peak hours), in order to make a specific plan of minutes. Users are classified
by their ages and the calls are classified by the period of time. Let P be the set
of possible groups of ages and T be the set of possible periods of time as shown
in Table 1.

Table 1. Classification of the AT&T social network.

Table 2. Set P

Nodes Type

{0, 1, 2, 7} p1
{4, 8} p2
{3, 5} p3
{6} p4

Table 3. Set T

Arcs Type

{a} t1
{b} t2

Fig. 4. Modified AT&T network.

Function F is formally defined as, ∀p, t · p ∈ P ∧ t ∈ T ⇒

F (G−(p, t)) =

∑
vi∈V −

∣∣{v2 | v2 ∈ V − ∧ (v1, v2) ∈ E−}
∣∣

|V −|

where G−(p, t) = (V −, E−) is the restricted graph obtained from G when re-
stricting the set of nodes to those of classification p and the set of arcs to those
associated with classification t. An example of the weight associated to the graph
taking the type of user teenagers (p1) during a period of time 5 minutes (t1) is
F (G−p1,t1) = 0.5.

The anonymised Social Network found by ADegree is depicted in Figure 5.
The graph is a 2-degree anonymous. Dotted edges were added by our solution
where shapes of nodes denote equivalence classes.

7 Conclusions

The use of social networks has increased exponentially and so as the informa-
tion shared by owners of these networks to different entities. This information
is of special interest for many companies to conduct studies such as marketing
or epidemiology. The owners of the networks are compelled by law to protect

Fig. 5. Anonymised SN.

the private information of their users when the network is sold/shared/released.
Anonymisation methods play a key role in this cases. The main purpose of these
methods is to protect the sensitive (private) information of the users involved
in the network while making the process of de-anonymisation more difficult.
Current methods for anonymisation are not safe enough. We have formally in-
troduced the ADegree constraint utilized in the process. The constraint seeks
to protect sensitive information of the network avoiding issues of the current
anonymisation processes. ADegree finds a network G′ such that: a) private in-
formation is removed from G′, making the network anonymous. As stated before,
this process is not enough to protect the network from different attacks. We use
anonymisation technique (i.e., adding fake edges), enforcing k-degree anonymous
property over G′. b) G′ has some modification with respect to the original net-
work in order to make the reverse process of de-anonymisation harder. Enforcing
this property implies that G′ losses some interesting properties that were con-
tained in the original network. The process of finding G′ takes into account the
utility of the network, that is, G′ is as close as possible to original graph, where
closeness is defined by users (a parameter of the constraint). We also show the im-
plementation of the constraint using Gecode. The current implementation does
not consider labelled graphs. Section 5.2 proposes an extension of the current
implementation to handle labels whilst not introducing extra time complexity.
We plan to extend the implementation to handle labels to compare our approach
to the existing ones. We also plan to formally prove the following properties of
ADegree.

Correct: it never removes values that are consistent with respect to its con-
straint.

Checking: it is singleton correctness (accept all satisfying assignments) and
singleton completeness (reject all non-satisfying assignments).

Domain consistent: it removes all inconsistent values.

Finally, we plan to exploit all CP techniques in order to anonymise a social
network under different type of attacks such as k-automorphism, l-neighbours
and others. Also, we started investigating to provide a solution for preserving
privacy under sequential releases of the same Social Network.

References

1. Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography. In
Proceedings of the 16th international conference on World Wide Web, WWW ’07,
pages 181–190, New York, NY, USA, 2007. ACM.

2. Smriti Bhagat, Graham Cormode, Balachander Krishnamurthy, and Divesh Sri-
vastava. Class-based graph anonymization for social network data. Proc. VLDB
Endow., 2(1):766–777, August 2009.

3. Alina Campan and Traian Marius Truta. Privacy, security, and trust in kdd. chap-
ter Data and Structural k-Anonymity in Social Networks, pages 33–54. Springer-
Verlag, Berlin, Heidelberg, 2009.

4. P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices (Hungarian).
Mat. Lapok, 11:264–274, 1960.

5. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

6. Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Chao Li. Resisting
structural re-identification in anonymized social networks. The VLDB Journal,
19(6):797–823, December 2010.

7. Andrei Lebedev, JooYoung Lee, Victor Rivera, and Manuel Mazzara. Link Pre-
diction using Top-k Shortest Distances. Springer LNCS, 2017.

8. Joo Young Lee and Jae C Oh. Agent perspective social networks: Distributed
second degree estimation. Encyclopedia of Social Network Analysis and Mining,
pages 1–12, 2017.

9. JooYoung Lee. Reputation computation in social networks and its applications.
2014.

10. JooYoung Lee, Kontantin Lopatin, Rasheed Hussain, and Waqas Nawaz. Evolution
of friendship: a case study of mobiclique. In Proceedings of the Computing Frontiers
Conference, pages 267–270. ACM, 2017.

11. JooYoung Lee and Jae C Oh. A node-centric reputation computation algorithm
on online social networks. In Applications of Social Media and Social Network
Analysis, pages 1–22. Springer International Publishing, 2015.

12. Changchang Liu and Prateek Mittal. Linkmirage: How to anonymize links in
dynamic social systems. CoRR, abs/1501.01361, 2015.

13. Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’08, pages 93–106, New York, NY, USA, 2008. ACM.

14. Manuel Mazzara, Luca Biselli, Pier Paolo Greco, Nicola Dragoni, Antonio Marraffa,
Nafees Qamar, and Simona de Nicola. Social networks and collective intelligence:
a return to the agora. IGI Global, 2013.

15. Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In
Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09,
pages 173–187, Washington, DC, USA, 2009. IEEE Computer Society.

16. Binh P. Nguyen, Hoa Ngo, Jihun Kim, and Jong Kim. Publishing graph data with
subgraph differential privacy. In Revised Selected Papers of the 16th International
Workshop on Information Security Applications - Volume 9503, WISA 2015, pages
134–145, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

17. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

18. Sergei Solonets. Adegree constraint implementation, 2017. Available at
https://github.com/Solonets/ADegree.

19. Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570, October 2002.

20. Bin Zhou and Jian Pei. Preserving privacy in social networks against neighbor-
hood attacks. In Proceedings of the 2008 IEEE 24th International Conference on
Data Engineering, ICDE ’08, pages 506–515, Washington, DC, USA, 2008. IEEE
Computer Society.

21. Lei Zou, Lei Chen, and M. Tamer Özsu. K-automorphism: A general framework
for privacy preserving network publication. PVLDB, 2(1):946–957, 2009.

