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Abstract. It is found that networks in real world divide naturally into
communities or modules. Many community detection algorithms have
been developed to uncover the community structure in networks. How-
ever, most of them focus on non-overlapping communities and the appli-
cability of these work is limited when it comes to real world networks,
which inherently are overlapping in most cases, e.g. Facebook and Weibo.
In this paper, we propose an overlapping community detection algorithm
based on edge representation learning. Firstly, we sample a series of edge
sequences using random walks on graph, then a mapping function from
edge to feature vectors is automatically learned in an unsupervised way.
At last we employ the traditional clustering algorithms, e.g. K-means
and its variants, on the learned representations to carry out communi-
ty detection. To demonstrate the effectiveness of our proposed method,
extensive experiments are conducted on a group of synthetic networks
and two real world networks with ground truth. Experiment results show
that our proposed method outperforms traditional algorithms in terms
of evaluation metrics.

Keywords: Network · Community detection · Representation learning
· Cluster

1 Introduction

Networks that represent real world systems are everywhere in human life, such
as biology, sociology, computer science, and academics [5][15]. An information
network represents an abstraction of the real world, it provide us a useful tool
to mine knowledge from links in it. Network analysis helps people solve real
life problems. The study of networks is of great importance and attracts a lot
of experts into it. One of the most important properties of network is com-
munity structure. The main purpose of community detection is to uncover the
inherent structure of networks. Networks in real world are always complicated
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Fig. 1: A sample network

and large-scaled. It is hard to process and analyze it directly. By community
detection techniques, networks are divided into different parts, the structure be-
comes obvious and the networks are more understandable which is helpful for
subsequent analysis. Finding communities becomes a critical issue to study and
explore networks. There are some typical applications listed as follows:

· Advertising. People in the same community often share similar interests.
If we know a person buys a product, we can post advertisements about similar
products to members who are in the same community with her. In this way, it
can help improve the performance of product recommendation system.

· Recommendation. In social networking software, e.g. Facebook and Wei-
bo, based on the community structure, we can recommend to a user those who
are in the same community but not his friends yet.

· Information propagation and Disease diffusion. For overlapping com-
munity detection, we can find the fuzzy nodes that belong to more than one
communities. Finding this kind of nodes is critical to speed up information prop-
agation and control disease diffusion.

· Information retrieval. Words with similar meaning tends to be in the
same community. When a user search a keyword, the results of the keyword and
its near-synonym can be presented to the user simultaneously. Thus community
detection helps promote personalized services.

The majority of existing community detection algorithms focus on finding
non-overlapping communities. However networks in real world are complicated
and nodes in them often belong to many different communities, especially in
social networks. In social networks, this kind of overlapping communities reflect
different types of associations between people. [6] For example, two users in
Weibo could be relatives, classmates, sport partners, etc. User A could be a
classmate of B and a sport partner of C at the same time, so she should be
in the community of classmates of B and in the community of sport partners
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Fig. 2: The architecture of newly proposed machine learning methods.

of C simultaneously. What’s more, A is important in the network, because B’s
classmates and C’ sport partners can build connection through A. As shown in
Figure 1, there are two communities which both have four members. It is obvious
that there is one fuzzy node belongs to both community 1 and community 2. This
node plays an important role in this network, it serves as a bridge between two
communities. When messages are propagated among different communities in a
network, the propagation path will always go through this kind of fuzzy nodes.
Thus finding such nodes which is called overlapping community detection is a
critical issue in community detection. For this reason, it is an effective way to
recover overlapping communities by grouping edges, rather than vertices. Each
edge is assigned to a single community, but clusters can still overlap because
edges in different communities may share one endpoint.

In recent years, some algorithms based on machine learning methods appear.
The architecture of these methods are shown in Figure 2. Given a network, the
first thing is to extract the node feature representations. Then the similarity
calculation part is done. There are a variety of similarity calculation methods,
e.g. cosine similarity. The last step is traditional clustering which is based on the
calculated node similarities. For this architecture, it is important how to learn
representations of the given networks, because network representations affect the
performance of the following community detection progress. In this paper, we
propose a new method based on edge representation learning which can not only
detect overlapping communities but also improve the performance of community
detection. We sample a series of edge sequences by random walks on graph,
then utilize unsupervised machine learning method to learn a mapping from
edges to feature representations. After the mapping progress, we divide edges
into groups by traditional clustering method, e.g. k-means algorithm [8] and its
variants. Each edge connects two nodes, that is to say, one edge corresponds two
nodes. In this way, we transform edges communities into corresponding nodes
communities. As a result, the fuzzy nodes in networks that belong to different
communities simultaneously can be detected. Our contributions are:



4

(1) We propose a scalable edge embedding method to learn edge representa-
tions based on language modeling tools.

(2) We apply edge representation learning method to community detection,
and propose a new way to find overlapping communities by clustering edges.

(3) We conduct multiple experiments on synthetic networks and real world
networks to test the performance of proposed algorithm.

The rest of the paper is organized as follows. Section 2 overviews related
work in community detection domain. Section 3 introduces edge representation
learning model. In section 4, we present steps on how to perform CD-ERL (com-
munity detection based on edge representation learning) algorithm. Section 5
displays the experiment and results. Section 6 concludes the paper.

2 Related Work

In the past few years, a lot of community detection algorithms have been pro-
posed [11][24]. Even though they are both for finding community structure, the
principles are different. Some algorithms are based on modularity optimization,
such as FN (Fast-Newman) algorithm [17]; some are based on graph partition-
ing, such as KL (Kernighan-Lin) algorithm [9]; there are also some algorithms
which are based on label propagation [19], spectral clustering [16] and dynamic
networks [2]. However most of them just fit networks with clear structure.

With the rapid development of representative learning for natural language
processing, there are some new representative methods proposed in network field
[18] [21] [1] [23], such as node2vec [7]. These methods provide a new guidance
for network analysis. However in community detection area, these methods that
divide nodes directly can only find non-overlapping communities, while commu-
nities in real world networks are always overlapping. They ignore the importance
of the nodes that belong to more than one communities.

Inspired by newly proposed representative learning methods, we proposed a
CD-ERL algorithm to detect overlapping communities by clustering edges. The
same way as representative learning methods for natural language processing,
we sample edge sequence according to network links, and learn a mapping from
edges to vectors. However, there are many representative learning methods used
in community detection area, they only consider nodes representation and nodes
clustering which lead to non-overlapping communities. We overcome this by
learning edge representations, and by clustering edges, we can get both edge
communities and corresponding node communities. The node communities we
detect are overlapping, and the fuzzy nodes can be detected.

3 Edge Representation Learning Model

In this paper we formulate the edge representation learning progress as a max-
imum likelihood problem by extending representative learning for natural lan-
guage processing into networks. Feature representation learning methods based
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on Skip-gram architecture[13] have been originally developed in the context of
natural language. Here we use Skip-gram model as an example to do community
detection task.

Let G = (V, E) be a given network. Here V is the set of nodes, E is the
set of edges in the network. We assume G is an undirected, unweighted network
here. Our goal is to embed edges in E into d-dimensional feature space Rd. Let
f : E → Rd be the mapping function from edges to feature matrix, while Rd(e)
is the feature representation of edge e. We regard edges in a graph as words in a
document, and edge neighbors as words before and after the target word. For e
in E, let N(e) represents the neighbors of edge e. In the embedding progress, we
want to preserve the neighbor relations as much as possible. Thus the objective
function is as follows:

max
∑
e∈E

logPr(N(e)|Rd(e)) (1)

We assume that given the feature representation of an edge, finding one
neighbor edge is independent of finding another neighbor edge. What’s more,
interactive edges have symmetry effect on each other. We use a softmax unit to
model the conditional likelihood of the source edge and its neighbor. In these
conditions, the objective function can be written in this form:

max
∑
e∈E

[− log
∑
e1∈E

exp(Rd(e) ·Rd(e1)) +
∑

i∈N(e)

Rd(i) ·Rd(e)] (2)

Then we optimize it using stochastic gradient ascent over the model pa-
rameters. The detailed steps of edge representation learning algorithm can be
summarized in Algorithm 1.

Algorithm 1: Edge Representation Learning Algorithm

Input: Graph(V,E), Dimensions d, Walks per edge r, Walk length l, Context size k
1: Initialize walks to Empty
2: for all iter = 1 to r do
3: for all edges e ∈ E do
4: Walk = RandomWalk(G, e, l)
5: Append walk to walks
6: f = StochasticGradientDescent (k, d, walks)
7: return f
8: end for
9: end for

4 CD-ERL Algorithm

In this section, the details of CD-ERL algorithm are described. There are four
steps to complete CD-ERL algorithm.
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Fig. 3: CBOW and Skip-gram model architectures. [13]

Step 1 : Edge sequences sampling. Edge sequence in network is non-
linear, unlike word sequence in document. It is important how to sample edge
sequences. Given a pronounced community structure, we want to achieve this
effect that pairs of edges in the same community are much more easily reachable
by the sampling strategy than pairs of edges in different communities. In this
paper, we choose random walk as the sampling strategy since random walk
can well meet our requirements. We collect edge neighbors by random walk,
and regard the sampled edge sequences in a network as word sequences in a
document.

Step 2 : Edge representations learning. After getting sampled edge se-
quences, based on representative learning method for natural language process-
ing, e.g. continuous bag of words [14] and Skip-gram model [13], we transform
edges in graph into representative feature matrix Rd using an unsupervised ma-
chine learning way. CBOW and Skip-gram model are two widely used methods
in natural language processing field. As shown in figure 3, the CBOW architec-
ture predicts the current word based on the context, and the Skip-gram predicts
surrounding words given the current word. At the same time the representation
of the inputs are automatically learned. Here we replace the words in the context
by sampled edge sequences.

Step 3 : Edges clustering. In this part, we choose an improved k-means al-
gorithm to complete edge clustering. Given edge feature matrix Rd, the objective
function is:
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E =

k∑
i=1

∑
x∈Ci

||x− ui||22 (3)

Our goal is to minimize it. Here ui is the mean vector of cluster Ci. K-
means algorithm[8] adopts greedy strategy and gets the approximate solution
by iterative optimization.

The performance of clustering depends on the initial k seeds, so it is crucial
how to choose k initial seeds. Here we deal with the seeds using an improved
method. Firstly, we choose one center uniformly at random from all data points.
Then we compute the distance between data point x and the nearest center
that has already been chosen, and choose one new data point at random as a
new center, using a weighted probability distribution where a point x is chosen
with probability proportional to D(x)2. Last, repeat the above steps until k
centers have been chosen. The detailed steps of improved K-means algorithm
are summarized in Algorithm 2.

Algorithm 2: Improved K-means Algorithm

Input: Dataset D = { x1, x2, ..., xm }, Cluster Number k
Output: Clusters C = { C1, C2, ..., Ck }
1: Select one data point u in Dataset D randomly
2: Repeat
3: for all l = 1 to m do
4: Compute distance D(xl) between xl and the nearest center
5: Choose a new center using a probability proportional to D(xl)

2

6: end for
7: Until k centers have been chosen
8: Repeat
9: Let Ci = φ 1 ≤ i ≤ k

10: for all j = 1 to m do
11: Compute dji = ||xj-ui||2
12: λj = argmini∈1,2,...,kdij
13: Cλj =Cλj t xj
14: end for
15: for all i = 1 to k do
16: Compute the new mean vectors : ui1 = 1

|Ci|
∑
x∈Ci

x
17: if ui1 6= ui then
18: Update ui to ui1
19: else
20: Keep the same ui
21: end if
22: end for
23: Until all the mean vectors do not change
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Step 4 : Transforming edge communities into node communities. In
graphs, each edge connects two nodes, in other words, one edge corresponds two
nodes. In this way, we can transform the edge communities into corresponding
node communities. In the example above, the edges connecting A with B and
A with C would be placed in different groups, and since they both have A as
endpoint, the latter turns out to be an overlapping vertex. Thus nodes belongs
to more than one communities can be detected, and we can get both edge com-
munities and node communities.

The complete pseudocode of CD-ERL algorithm is in Algorithm 3.

Algorithm 3: CD-ERL Algorithm

Input: A network G(V,E), edge representation learning parameters, number of
communities k

1: vectors = ERL(ERL parameters)
2: edge communities = K-means(vectors, k)
3: turn edge communities into node communities
4: return node communities

5 Experiments and Results

To better explain the process of the proposed CD-ERL algorithm, we test it on
Zachary’s karate club dataset [25].

5.1 A running instance

Zachary’s karate club dataset is widely used in network analysis field. A social
network of a karate club was studied by Wayne W. Zachary for a period of
three years from 1970 to 1972. The network captures 34 members of a karate
club, documenting 78 pairwise links between members who interacted outside
the club. The visualization of this network is shown in Figure 4. In this part,
the parameters used in CD-ERL algorithm is set as table 1. We extract 5 walks
per edge from the original network. Every walk is a edge sequence, and the
length of each edge sequence is 10. We input these extracted walks into the
representation learning model and set the feature representation dimensions,
then an edge representation will be automatically learned.

The community detection result of CD-ERL algorithm is shown in table 2, it
is the detected edge communities. Getting edge communities, we can transform
it into node communities based on the correlation of nodes and edges. The final
result node communities are shown in table 3. We can see that it can not only
detect the overlapping nodes, but also provide the probability that one node
belongs to a community.
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Fig. 4: Zachary’s karate club dataset.

Table 1: Experiment Parameters

Parameters # walks Walk length Dimensions Communities

Zachary’s karate club networks 5 10 8 2

To test the performance of proposed CD-ERL algorithm, we do experiments
on nine synthetic network benchmarks and two real world networks, and compare
it with two traditional community detection methods.

5.2 Evaluation Metrics

NMI In this paper, we use NMI (Normalized Mutual Information) to evaluate
the performance of community detection algorithms. The definition of NMI is
as follows:

NMI =
2I(X;Y )

H(X) +H(Y )
(4)

If there are N samples in both X and Y, Ni is the number of samples which
is equal to i, Nj is the number of samples which is equal to j, Nij is the number
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Table 2: Edge communities

Edge

Community 1
1,3,4,5,6,8,10,11,12,14,15,16,17,20,21,24,26,28,29,31,32,33,34,35,37,39,
40,41,42,43,46,48,49,50,51,52,54,55,56,59,61,63,64,65,67,68,69,73,76

Community 2
0,2,7,9,13,18,19,22,23,25,27,30,36,38,44,45,47,53,57,58,60,62,66,70,71,
72,74,75,77

Table 3: Node communities

Node 0 1 2 3 4 ... 9 10 11 12 ...

Community 1 0.6875 0.4444 0.7000 0.8333 0.6667 ... 0.5000 0.6667 0 1 ...

Community 2 0.3125 0.5556 0.3000 0.1667 0.3333 ... 0.5000 0.3333 1 0 ,,,

of samples which is equal to i in X, equal to j in Y. The calculation formula of
NMI[4][22] becomes as follows:

NMI =
−2

∑
ij Nij log

Nij ·N
Ni·Nj∑

iNi · log Ni

N +
∑

j Nj · log
Nj

N

(5)

Its lower bound is 0, representing the independence of the result and ground
truth, and its upper bound is 1, representing community detection result is the
same with ground truth. The closer NMI score is to 1, the better the community
detection result is.

V-measure A clustering result satisfies homogeneity if all of its clusters contain
only data points which are members of a single class. A clustering result satisfies
completeness if all the data points that are members of a given class are elements
of the same cluster. V-measure[20] is the harmonic mean between homogeneity
and completeness.

V =
2 · homogeneity · completeness
homogeneity + completeness

(6)

It is symmetric. Its bound is between 0 to 1. 1 stands for perfectly com-
plete community detection. The closer V-measure score is to 1, the better the
community detection result is.

Since CD-ERL algorithm can find overlapping communities, in order to per-
form a better contrast with the traditional non-overlapping community detection
algorithms, we made a preprocessing for the results of CD-ERL algorithm. If n-
odes belongs to more than one communities, we will randomly set this node to
one of these communities. In this way, we can contrast the CD-ERL algorithm
with traditional non-overlapping community detection methods.
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5.3 Baseline Methods

In this paper, we employ two traditional representative community detection
algorithms, the LPA (Label Propagation Algorithm) and Louvain algorithm, as
the contrast with our method.

Label Propagation Algorithm This algorithm was introduced by Raghavan
et al[19]. It proceeds based on the assumption that each node in the network
is in the same community with the majority of its neighbors. Every node is
initialized a distinct label at the start. In the process of iteration, for a node,
count its neighbors’ labels and label the node according to the majority of its
neighbors’ labels. When each node in network has the same label as the majority
of its neighbors, the iteration stops. The LPA algorithm is suitable for large scale
networks.

Louvain Algorithm The Louvain community detection algorithm[3] optimizes
the modularity of a partition of the network by greedy optimization. It optimizes
local modularity and generates small scale communities. Then it regards the s-
mall communities as nodes to generate a new network. These steps are repeated
iteratively until a maximum of modularity is attained and a hierarchy of com-
munities is produced. Relatively speaking, this method is fast and accurate.

5.4 Dataset

Synthetic Benchmark Networks LFR(Lancichinetti-Fortunato-Radicchi) bench-
mark graph[10] is one of the most frequently-used synthetic network model in
community detection filed. This method introduces power-law distributions of
degree and community size to the graphs to simulate real world networks. There
are six main parameters in this model. N is the number of nodes, k is the average
degree, maxk is the maximum degree of nodes, minc is the minimum number of
community members, maxc is the maximum number of community members. µ
is mix parameter, which is defined as:

µ =

∑
i k

ext
i∑

i k
tot
i

(7)

Here kexti and ktoti stand for the external degree of node i, i.e. the number
of edges connecting it to others that belong to different communities, and the
total degree of said node. In this paper, we generate nine networks with different
mu. Since the definition of community that in the same communities nodes are
linked densely, between different communities the links are sparse, we choose µ
from 0.1 to 0.5 for the following experiment. The detail settings of parameters
for the synthetic networks are shown in table 4.
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Table 4: Parameter Settings of Synthetic Networks

No. N k maxk minc maxc µ

1 10000 8 20 3 1000 0.10

2 10000 8 20 3 1000 0.15

3 10000 8 20 3 1000 0.20

4 10000 8 20 3 1000 0.25

5 10000 8 20 3 1000 0.30

6 10000 8 20 3 1000 0.35

7 10000 8 20 3 1000 0.40

8 10000 8 20 3 1000 0.45

9 10000 8 20 3 1000 0.50

Real World Networks In this paper, we also evaluate our algorithm on two
real world networks. These networks with ground truth communities are both
from SNAP(Stanford Network Analysis Platform) [12]. We conduct contrast
experiments on Amazon and Youtube networks. These two datasets contain not
only the graph links, but also the ground truth communities.

We observe that there are some stray nodes with few links in networks which
will damage the community detection progress, so we treat them as noisy nodes.
Thus, we preprocess these datasets by deleting these stray nodes. After that we
get two high-quality networks whose properties are shown in table 5.

Table 5: Properties of Real World Networks

Name Type Nodes Edges Average degree Description

Youtube Undirected&unweighted 39841 224235 11.2565
Youtube online

social network

Amazon Undirected&unweighted 16716 48739 5.8314
Amazon product

network

5.5 Result Analysis

To test the performance, we run CD-ERL algorithm and the contrast methods
on both synthetic and real world networks. The parameters used in CD-ERL
algorithm is set as table 6.

We generate nine different synthetic networks with different values of µ from
0.1 to 0.5. We repeat experiments for five times on every synthetic networks, and
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Table 6: Experiment Parameters

Parameters # walks Walk length Dimensions Communities

Synthetic networks 20 40 128 1000

Real world networks 20 40 128 5000

regard the average results as the final results. Experiment results on synthetic
benchmark networks are shown in Figure 5 and Figure 6.
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Fig. 5: A contrast of NMI using different methods on networks with different µ.
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Fig. 6: A contrast of V-measure using different methods on networks with differ-
ent µ.
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Fig. 7: A contrast of NMI using different methods on different real world net-
works.

In Figure 5 and Figure 6, horizontal axis represents different mu, while ver-
tical axis represents the value of NMI and V-measure score. We can see that
there is a rapid decrease for Louvain algorithm when mu is getting larger. On
the contrast, CD-ERL and LPA algorithm is stable with the increase of mu. But
the CD-ERL algorithm we proposed in this paper performs better than LPA.
For mu from 0.1 to 0.25, Louvain algorithm gets higher value of NMI than the
others. This is because when mu is small, networks usually have clear structure,
thus Louvain algorithm using modularity optimizing strategy deal with this kind
of networks better. But real world networks are always complex and uncertain,
Louvain algorithm cannot solve the reality problems stably. CD-ERL and LPA
are stable in networks with different structure. But we can see that for the mean
NMI and V-measure score, CD-ERL performs best in contrast with other two
methods. When dealing with real networks with complex and fuzzy structure,
CD-ERL is more suitable.

What’s more, we also employ these algorithms on real world networks. Ex-
periment results on real world networks are shown in Figure 7 and Figure 8.

It is obvious in Figure 7 and Figure 8 that the performance of CD-ERL
algorithm is much better than LPA and Louvain algorithm. The main idea of
Louvain algorithm is to maximize the modularity of networks, it is suitable for
networks with obvious community structure. Thus, when the real world network
is fuzzy, Louvain algorithm gets bad results. The performance of LPA algorithm
is between Louvain algorithm and ours. For LPA algorithm, the label of node in
network depends on the labels of its surrounding nodes. When the network is
fuzzy, the result becomes bad. CD-ERL algorithm converts the graph links into
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Fig. 8: A contrast of V-measure using different methods on different real world
networks.

vectors by edge representation learning, and it uses distance measure instead
of modularity in clustering process, this method performs well in real world
networks.

5.6 Parameter Sensitivity

In this section, we discuss the parameter sensitivity of proposed CD-ERL al-
gorithm. We do the community detection task on Amazon dataset and show
how the NMI score changes when we change the three parameters of CD-ERL
algorithm: (1) walk length of random walk (2) number of walks per edge (3)
dimensions of the embedding.

As shown in Figure 9, we can see that when feature dimension is set to a
small value, the NMI score is higher. With the growth of dimension, the NMI
score drops a bit, then keeps a steady state. What’s more, we do experiments on
Amazon dataset to see how the NMI score changes with different walk length
settings. Results in Figure 10 show when walk length is set to 20, the NMI
score is low. When we do random walks of walk length larger than 40, the NMI
score increases a lot and remains constant. Similarly for the parameter of walks
number per edge, Figure 11 shows with a small number of walks per edge, we
get a low NMI score. But when the number of walks is larger than 30, the NMI
score increases a bit. And with the growth of number of walks per edge, the NMI
score stays stable.
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Fig. 9: NMI score on Amazon dataset for various values of dimensions.
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Fig. 10: NMI score on Amazon dataset for various values of walk length.

6 Conclusion

Traditional community detection methods pay more attention to dividing nodes
directly, but in this paper we propose a method using traditional clustering algo-
rithm to divide edges into communities by learning edge feature representations.
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Fig. 11: NMI score on Amazon dataset for various values of number of walks per
edge.

Then we turn the edge communities into corresponding node communities to
uncover the fuzzy community structure in complex networks. Experiments on
synthetic networks and two real world networks show that our algorithm per-
forms well and it is suitable to solve fuzzy networks. CD-ERL algorithm in this
paper aims at homogeneous networks, we will study how to extend it to hetero-
geneous networks next.
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