
Efficient Processing of Spatiotemporal Pattern
Queries on Historical Frequent Co-Movement

Pattern Datasets

Shahab Helmi and Farnoush Banaei-Kashani

Department of Computer Science and Engineering, University of Colorado Denver
[shahab.helmi, farnoush.banaei-kashani]@ucdenver.edu

Abstract. Thanks to recent prevalence of location sensors, collecting
massive spatiotemporal datasets containing moving object trajectories
has become possible, providing an exceptional opportunity to derive in-
teresting insights about behavior of the moving objects such as people,
animals, and vehicles. In particular, mining patterns from co-movements
of objects (such as movements by players of a sports team, joints of a
person while walking, and cars in a transportation network) can lead to
the discovery of interesting patterns (e.g., offense tactics of a sports team,
gait signature of a person, and driving behaviors causing heavy traffic).
Given a dataset of frequent co-movement patterns, various spatial and
spatiotemporal queries can be posed to retrieve relevant patterns among
all generated patterns from the pattern dataset. We term such queries,
pattern queries. Co-movement patterns are often numerous due to combi-
natorial complexity of such patterns, and therefore, co-movement pattern
datasets often grow very large in size, rendering naive execution of the
pattern queries ineffective. In this paper, we propose the FCPIR frame-
work, which offers a variety of index structures for efficient answering of
various range pattern queries on massive co-movement pattern datasets,
namely, spatial range pattern queries, temporal range (time-slice) pat-
tern queries, and spatiotemporal range pattern queries.

Keywords— spatiotemporal indexing; spatiotemporal query processing; pat-
tern query;

1 Introduction

Recent advances in location sensors, for instance wearable devices and cell phones
with built-in GPS sensors, have enabled collection of massive moving object
datasets. We term these datasets multi-variate spatiotemporal event sequence
datasets (or MVS datasets, for short) where each event captures the location of
an object (among other possible information) at a specific time, and accordingly,
each event sequence (or variate) represents the trajectory of an object. MVSs
can capture movements/events about various objects in different applications;
e.g., joints in human body as a person walks, vehicles navigating a transportation

2

network, ants in a colony as they follow their daily affairs, players in sports teams
(e.g., soccer teams) competing on a field, etc. In this paper, we are interested
in frequent co-movement patterns, where a frequent co-movement pattern is a
pattern of movement for a set of objects that are temporally (not necessarily spa-
tially) close and repeatedly appears in various time windows. Here, we describe
three use-cases of frequent co-movement pattern mining1: (i) in traffic behavior
analysis, finding frequent co-movement patterns of vehicles on a transportation
network enables study of the dominating driving behaviors that determine and
affect traffic condition in the network; (ii) in human gait analysis, skeletal gait of
human, where movement of each join is captured by a variate in the correspond-
ing MVS, can be analyzed to identify joint co-movement patterns that uniquely
identify a gait, e.g., for gait-based identification; (iii) in sports analytics, tactics
of sports teams can be uncovered by discovering frequent co-movement patterns
from MVS datasets collected from players during games.
Co-movement patterns are often numerous due to combinatorial complexity of
such patterns, and therefore, the mined co-movement pattern datasets often
grow very large in size. Accordingly, naive exploration of such pattern datasets
to retrieve relevant patterns becomes very time-consuming, if not infeasible. We
term such search queries to retrieve relevant patterns from co-movement pattern
datasets, co-movement pattern queries (or pattern queries for short). Various
conventional (spatiotemporal) queries can be posed as pattern queries. In this
paper, we propose the Frequent Co-movement Pattern Query Indexing and Re-
trieval (FCPIR) framework, which introduces novel index structures and query
processing algorithms, in order to efficiently process pattern queries on frequent
co-movement pattern datasets. In particular, we present how FCPIR enables effi-
cient processing of three spatiotemporal query families on such frequent pattern
datasets: spatial range pattern queries, temporal (or time-slice) range pattern
queries, and spatiotemporal range pattern queries.
Such queries are among main types of queries used for exploration of pattern
datasets. For example in traffic behavior analysis, one can find and compare
frequent driving patterns in the downtown versus suburbs using spatial range
pattern queries, while the frequent driving patterns in the whole city can be
studied during the rush hours versus regular hours using temporal range pattern
queries. Finally, spatiotemporal range pattern query can be used to study fre-
quent driving patterns that have caused an accident chain on a major highway.
The remainder of this paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 presents necessary notations and formal definition of the
problem. In Section 4, we present the the SFCMP-tree and LM query processing
algorithm for spatial range pattern queries. In Section 5, the TFCMP-tree and
the TSPQ query processing algorithms are proposed for temporal range pattern
queries.The LM-MIF query processing algorithm is proposed for spatiotemporal
range pattern queries in Section 6. Experimental results are provided in Section
7, and Section 8 concludes the paper and discusses the future work.

1 See [2] for more details about existing methods for MV S frequent co-movement
pattern mining.

3

2 Related Work

In this section, we review the most relevant bodies of literature to our work.
Section 2.1 presents trajectory indexing approaches, and Section 2.2 reviews
indexing of frequent patterns. Finally, mobility pattern queries are reviewed in
Section 2.3

2.1 Trajectory Indexing and Retrieval

Spatiotemporal range queries are used to retrieve the trajectories that are con-
tained in (or intersect with) a given spatiotemporal range. Index structures pro-
posed for these types of queries can be roughly categorized into three groups.
The first group treats the temporal dimension similar to the spatial dimensions
by adding it to the traditional 2D R-trees (e.g., STR-tree [9].) However, the
performance of 3D R-trees significantly degrades if the given dataset is dynamic
or trajectories in the dataset are long. This is due to exponential increase in the
number of conflicts between MBRs in such 3D R-trees. In order to reduce the
number of confilcts, the second group of work proposes constructing a separate
R-tree at each time-stamp (time-interval) for the part of dataset introduced in
that time-stamp (e.g., HR+-tree [11]). With the third group, the region of in-
terest is divided into a number of cells. Each cell stores the information of those
trajectory segments that intersect it (e.g., SETI [1]).
In this paper, we study pattern range queries to retrieve co-movement patterns
from pattern datasets, rather than range queries on trajectory datasets. More-
over, we are interested in the retrieval of frequent patterns; hence, checking for
intersecting patterns in a given range is not sufficient and the number (frequency)
of range intersection must be considered as well.

2.2 Mobility Pattern Queries on Trajectory Datasets

In [6], authors propose a query language for mobility patterns. Similarly, in [10]
generic operators are described to support retrieval of known mobility queries
(such as finding all trajectories that have moved from point a to point b and
finally stayed in point c for 10 minutes). However, since we do not assume
any predefined constraints for co-movement patterns, to find all frequent co-
movement patterns using the aforementioned methods we need to generate all
possible co-movement patterns to be processed using methods such as those dis-
cussed in [10], which is most inefficient if at all feasible. To address this problem,
we introduce a two-step pattern mining approach instead. With this approach,
first we mine all frequent co-movement patterns from a given trajectory dataset
using a spatiotemporal extension of the well-known apriori algorithm that we
proposed in our prior work [2]. In the second step, which is the focus of this
work, we introduce pattern index structures and corresponding query process-
ing algorithms to efficiently retrieve such patterns from frequent co-movement
pattern datasets.

4

2.3 Frequent Pattern Indexing and Management

Indexing structures for frequent patterns can be categorized into two major
groups. The first group focuses on similarity search, e.g., finding the k-nearest
patterns to a given pattern (e.g., see [7]), while the second group aims at com-
pressing frequent pattern datasets, e.g., by storing only maximal [12] or closed
[8] patterns. However, they are neither developed for trajectory (spatial) data,
nor allow time-slice (temporal) pattern queries which should account for cases
where some frequent patterns become infrequent during a given time-slice. The
closest work to our work is [4], where authors propose an index structure for
spatiotemporal range queries by repurposing the traditional R-trees in order to
reduce the number of disk accesses. However, this approach is only applicable
to periodic patterns. Moreover, it only considers spatiotemporal intersection of
patterns with the given range not the frequency of intersection. Finally, it only
returns the id of qualified objects not the actual trajectories, while in this paper
we are interested in retrieving the actual patterns not just their ids.

3 Problem Definition

Fig. 1. A co-movement pattern including three objects

Let O = {O1, O2, . . . , On} be a set of n moving objects. For example, in
Figure 1 O = {object1, object2, object3}. Let Si show the trajectory of object Oi
denoting the spatial path that it follows over time. Si can be captured as a se-
quence of locations in 2D space ordered by time as follows: Si = (lt1 , lt2 , . . . , ltm),

5

where ltj shows the location of Oi at the jth timestamp. In this paper, fre-
quent co-movement patterns are of interest, where a frequent co-movement pat-
tern is a pattern of movement for a subset of objects in O that repeatedly
appears in various time windows. In this paper, we assume a discrete spa-
tial model (i.e., a grid) by dividing the entire region of interest into smaller
regions and replacing absolute locations of objects by their corresponding re-
gions. For example, in Figure 1, the trajectory of object 1 can be modeled as
S1 = (WAt1 , IDt2 ,MTt3 , IDt4 ,WYt5). Finally, we define multivariate spatial
event sequence MV S = {S1, S2, . . . , Sn} as a set of n moving object trajecto-
ries. In the rest of this section, we provide necessary definitions to define pattern
queries on a given dataset of frequent co-movement patterns, which is assumed
to be (previously) mined from an MVS dataset.

Definition 1 (Co-Movement Pattern). We define a co-movement pattern
as α = {s1, s2, . . .}, where each si is a continuous sub-sequence of a trajectory
Si. ts(α) and te(α) are also defined to represent the start time and end time
of the co-movement pattern α, respectively. We also define the time-span of the
co-movement pattern α as T (α) = (te(α)− ts(α)) + 1.

Definition 2 (Valid Co-Movement Pattern). We consider a co-movement
pattern α as a valid co-movement pattern if it satisfies the following conditions:
i) α cannot be empty ii) α must not contain more than one sub-sequence si from
the same event sequence Si, iii) all sub-sequences in α must have the same length,
i.e., the same number of regions in their sequence, and iv) T (α) ≤ Tmax, where
Tmax is user-defined maximum allowed time-span of a co-movement pattern.

To elaborate, Condition i is self-explanatory; Condition ii ensures we only con-
sider patterns across different objects; Condition iii limits the patterns to those
that include same number of events from each object invoked in the pattern;
and finally, Condition iv ensures we only consider temporally local patterns i.e.,
patterns that appear in the same time window rather than far apart in time. For
the sake of simplicity, in the rest of this paper we use co-movement pattern and
valid co-movement pattern interchangeably.
In Figure 1, α = {(ID,MT, ID)S1

, (CA,NV,UT)S2
} is a valid patterns with

ts(α) = 1, te(α) = 4, and T (α) = (4− 1) + 1 = 4.

Definition 3 (Sub-Pattern and Super-Pattern). We say α is a sub-pattern
of the co-movement pattern α′, i.e., α ⊂ α′ (or α′ is a pattern of the α) if for
each si ∈ α there is a s′i ∈ α′, such that si is a continuous sub-sequence of s′i.

In Figure 1, if α = {(ID,MT)S1}, α′ = {(ID,MT, ID)S1}, and α′′ =
{(ID,MT, ID)S1

, (CA,NV,UT)S2
}, then α ⊂ α′ ⊂ α′′.

Definition 4 (Occurrence and Support). We say an occurrence of co-
movement pattern α = {s1, s2, . . . , sk} exists in a multivariate spatial event se-
quence dataset MV S, if MV S contains α. We denote all occurrences of α in an
MV S as occ(α) = (λ1, λ2, ..., λf), where λj captures the start and end time of
each occurrence, and sup(α) = |occ(α)| denotes the support of a co-movement
pattern α in MV S dataset.

6

Note that our proposed framework allows for any of the numerous existing fre-
quency measures to count occurrences of a pattern in sequence data (e.g., [3])
assuming they preserve the monotonicity property, (i.e., the frequency of a co-
movement pattern α cannot be greater than those of its sub-patterns).
In Figure 1, for α = {(ID,WY)S1

}, occ(α) = ([4, 5]) and |occ(α)| = 1.

Definition 5 (Frequent Co-movement Pattern). A co-movement pattern
α is a frequent co-movement pattern, if sup(α) ≥ µ, where µ is the user-defined
minimum support threshold. Given a maximum time-span Tmax, a minimum-
support µ, and a multivariate spatial event sequence dataset MV S of n mov-
ing objects, we assume F denotes the set of all frequent co-movement patterns
mined from the given MV S. Accordingly, we define FCPD (short for frequent
co-movement pattern dataset) a pattern dataset containing F , where for each
pattern α in F we store id(α), which is unique for each pattern, as well as
occ(α) along with the pattern itself.

Given the above definitions, we define the patterns queries studied in this paper
as follows.

Definition 6 (Spatial Range Pattern Query (SRPQ)). Given an FCPD
and a spatial range query Qr containing the set of grid regions Qr = {r1, r2, ...}
from the grid superimposed on the FCPD’s region of interest, a spatial range
pattern query QS returns a subset P ⊆ FCPD of frequent co-movement patterns
in the given FCPD such that each pattern α ∈ P is fully contained in Qr, i.e.,
all events in α are located inside some ri ∈ Qr.

Definition 7 (Temporal Range (or Time-Slice) Pattern Query
(TRPQ)). Given an FCPD and a temporal range query (time-slice) Qt which
is a continuous time-interval Qt = [ts, te], a temporal range pattern query QT
returns a subset P ⊆ FCPD of frequent co-movement patterns in the given
FCPD such that each pattern α ∈ P frequently occurs during Qt, i.e., for each
pattern α ∈ P , sup(α) ≥ µ during Qt.

Definition 8 (Spatiotemporal Range Pattern Query (STRPQ)). Given
an FCPD and a spatial range query Qr, and a temporal range query Qt, a
spatiotemporal range pattern query QST =< Qr, Qt > returns returns a subset
P ⊆ FCPD of frequent co-movement patterns in the given FCPD such that
each pattern α ∈ P is fully contained in Qr and frequently occurs during Qt.

In Sections 4 through 6, we propose efficient index structures and query process-
ing algorithms for each of the aforementioned queries, respectively.

4 Spatial Range Pattern Queries (SRPQ)

In this section, first we present the SFCMP-tree (short for Spatial Frequent Co-
Movement Pattern), a clustered index structure for efficient SRPQ processing.
Then, we describe our Longest-Match (LM) query processing algorithm which
exploits the SFCMP-tree in order to efficiently retrieve qualified frequent co-
movement patterns for a given query QS .

7

4.1 SFCMP Tree

Fig. 2. High-level structure of the SFCMP-tree for SRPQ processing

Definition 9 (Region Sequence). Suppose C is the set of regions covered by
α, i.e., the set of regions where each region is the location of at least one of the
events in α. We define the region sequence of α, Γ (α), as the ordered set of
regions in C, where the order is arbitrary, e.g., based on lexicographic order of
IDs associated with the regions. We also define |Γ (α)| as the level of α.

For example, if α = {(ID,MT, ID)S1}, and α′ =
{(ID,MT, ID)S1 , (CA,NV,UT)S2}, Γ (α) = (ID,MT) and Γ (α)′ =
(CA, ID,MT,NV,UT).
Figure 2 shows the high-level structure of the SFCMP-tree, τs. The SFCMP-tree
consists of a collection of B+-tree index structures. Each B+-tree Bi indexes
patterns α ∈ FCPD that are at level i (i.e., |Γ (α)| = i), for i = 1 · · · N ,
where N is the highest level. The region sequence of the pattern α is used as
the index key to construct the B+-tree indexes. Moreover, the B+-tree indexes
are clustered index structures. This is ensured by ordering patterns in the
given FCPD first based on their level, and within each level, based on the
corresponding region sequence of the patterns at that level. The ordered dataset
is then stored in the disk as a clustered file.

4.2 LM Query Processing Algorithm

Lemma 1 (Apriori Property). If all regions in a region sequence Γi for a
frequent co-movement pattern α are contained in the given query Qr, then each
pattern α′ with Γ ′

i ⊂ Γi is also contained in Qr.

8

Fig. 3. A detailed example of SFCMP-tree

With the Largest-Match(LM) SRPQ processing algorithm, once query Qr is
received, first the region sequence and level of the pattern query is generated as
defined in Section 4.1. Next, the region sequence lookup table of SFCMP-tree is
used to identify the B+-tree index Bi which indexes patterns at the same level.
Thereafter, Bi is traversed using the region sequences of the Qr as the search
key to identify the leaf node that contains the same region sequence (if it exists
in FCPD). This leaf node has a pointer to a page/block on the disk where
all patterns with the same region sequence are clustered; these patterns will be
efficiently retrieved to be added to the result set P . However, note that given
Lemma 1, we know that all patterns whose regions sequences are sub-sequences
of the regions sequence Qr also belong to P . To retrieve such patterns, the naive
approach is to recursively generate all sub-sequences of the Qr region sequence,
and run them as separate queries (as explained above), adding their result to P .
As mentioned in Section 4.1, with SFCMP-tree we include pointers in the file
itself that directly point to the pattern groups with regions sequences Γ ′

i s, where
Γ ′
i s are sub-sequences of the region sequence Γi. Therefore, with SFCMP-tree we

can directly retrieve all relevant patterns without having to traverse the tree for
each sub-query.
As an example, consider Qr = {1, 10}. the region sequence of this level 2 Qr is
1 − 10. Figure 3 (partially) shows the path which will be traversed to retrieve
patterns to process Qr
Algorithm 1 illustrates the pseudocode for LM algorithm. The input to the
algorithm is a set of regions Qr0 , and the output of the algorithm is P , which
contains all frequent co-movement patterns that are completely inside Qr0 . First
result set P and query queue q are initialized to ∅ and Qr0 , respectively (Line
3). Then if q is not empty, the head element of q is popped into a temporarily
variable tmp. Thereafter, the Search method is called to check if τs contains
tmp, and if so, the corresponding node is returned and added to p (Lines 5-6).
Then, using the pointer of p all patterns that their region sequences are equal to

9

that of Qri , are fetched from the stored FCPD by the Fetch method and added
to P (Line 6). If tmp does not exist in τs, then the Search method returns ∅.
In this case, all direct subsets of tmp are generated by the Subset method and
pushed into q (Lines 9-10). Finally, P is returned (Line 11).

Algorithm 1 LM Query Processing Algorithm

1: Input: Qr0 : a given SRPQ
2: Output: P : all frequent co-movement patterns contained in Qr0

3: P ← ∅, q ← Qr0
4: while (q 6= ∅) do
5: tmp← q.pop()
6: p← τs.Search(tmp)
7: if p 6= ∅ then
8: P ← P∪Fetch(F, p.pointer)

9: else
10: q ← q ∪ tmp.Subset()
11: return P

5 Temporal Range Pattern Queries (TRPQ)

In this section, we first present the TFCMP-tree (short for Temporal Frequent
Co-Movement Pattern). Then, the Minimum Interval Frequency (MIF) query
processing algorithm is presented to efficiently process TRPQ queries using
TFCMP-tree.

5.1 TFCMP Index Structure

Fig. 4. An instance of the TFCMP-tree

10

Definition 10 (Minimum Frequency Interval). Given a timestamp ti, we
define the minimum frequency interval Iα,ti = [ti, tj] of a frequent co-movement
pattern α such that α is a frequent pattern in any interval [ti, tk] if tj ≥ tk, and
α is not frequent in any interval [t′i, t

′
k] if tj < tk.

For example, assume occ(α1) = ([1, 3], [4, 6], [8, 12], [13, 17]), occ(α2) =
([4, 11], [5, 14], [8, 22], [12, 33]), and µ = 2. Then, Iα1,1 = [1, 6]. The TFCMP-
tree corresponding to this example is illustrated in Figure 4.
The TFCMP-tree τt is basically an inverted index on time, where each node Iα,T
includes all patterns α in FCPD that have an occurrence which starts at time
T . For each such pattern α, the pair (id(α), Iα,T) is stored in τt[T]. Moreover,
for efficient lookup of the index nodes the nodes are indexed using a B+-tree
with T as the index key. Figure 4 shows an instance of a TFCMP-tree.

5.2 MIF Query Processing Algorithm

A naive way to answer time-slice pattern queries is to sequentially read pat-
terns from F and check which ones are frequent during the given time-interval
QT = [ts, te]. However, when F is large, using this approach causes many I/O
requests which is time consuming. Also, for each pattern α, occ(α) must be enu-
merated to see if it is frequent during Qt or not. To address these issues, we
propose the Minimum Interval Frequency (MIF) query processing algorithm us-
ing the TFCMP-tree in order to efficiently retrieve co-movement patterns that
are frequent during Qt.
First, the MIF algorithm needs to find t1 = ts (or the earliest timestamp after ts
if ts does not exist in τt). In order to speed this up, τt contains a B+-tree that is
constructed on timestamps (see Figure 4). After finding t1, for each tj ∈ [t1, te],
the MIF algorithm checks the elements of τt[tj]. For each element (id(α), Iα,tj),
if Iid(α),tj ≤ te then α is frequent in Qt and id(α) must be added to the result
set p. After finding the id of all frequent co-movement patterns in Qt, actual
patterns must be fetched from F . To reduce the fetching time MIF uses F ′,
which contains the same set of patterns as F but patterns are sorted based on
their ids.
For example, for the given TFCMP index τt in Figure 4 if Qt = [2, 13], t1 will
be 4, since t = 2 does not exist in τt. There are two elements in τt[4]. id(α1) will
be added to p since Iα1,4 = 12 ≤ 13 but id(α2) will not since Iα2,4 = 14 > 13,
which means that α2 is not frequent during Qt.
The details of the MIF algorithm is illustrated in Algorithm 2. The input to
the algorithm is a time-interval Qt and the output is P which is the set of all
co-movement patterns that are frequent during Qt (Lines 1-2). First P and p are
initialized to ∅ (Line 3). Then the Find method is called finding t1 which will
be set to ts if ts exist in τt. Otherwise, it will be set to the nearest timestamp
after ts that exists in τt (Line 4). Then for each ti, such that t1 ≤ ti ≤ te, all
(id(α), Iα,ti) ∈ τt[ti] are checked and if Iid(α),ti ≤ te, then id(α) is added to set
of frequent co-movement pattern ids p (Lines 6-8). Then, all frequent patterns
whose ids are in p, will be fetched from F ′ using the Fetch method and added
to P (Line 9). Finally, P is returned (Line 10).

11

Algorithm 2 MIF Query Processing Algorithm

1: Input: Qt = [ts, te]: a given time-interval
2: Output: P : all frequent co-movement patterns during Qt

3: P ← ∅, p← ∅
4: t1 = τt.F ind(ts)
5: for ti = t1 : te do
6: for each (id(α), Iα,ti) ∈ τt[ti] do
7: if (Iα,ti ≤ te) then
8: p← p ∪ id(α)

9: P ← Fetch(F ′, p)
10: return P

6 Spatiotemporal Pattern Queries (STRPQ)

One approach to answer a spatiotemporal pattern query QST =< Qr, Qt > is to
perform the spacial range pattern query first (as explained in Section 4) following
by a frequency count for each pattern that meets the spatial criteria to check
whether they are frequent during Qt or not. We propose the LM-MIF query
processing algorithm which uses both of the two index structures proposed in
Sections 4 and 5 to process spatiotemporal pattern queries.

6.1 LM-MIF Query Processing Algorithm

For a given spatiotemporal query QST , first the LM-MIF finds all patterns that
are completely contained in Qr using the LM algorithm described in Section 4.
The results of this step is stored in P1. Next, it finds the id of patterns that are
frequent during Qt using the MIF algorithm and stores them in P2. Then, it
returns patterns in P1 that their ids exist in P2 and there is no need to perform
the frequency count for patterns in P1. Note that the actual patterns are no
longer fetched by MIF since they are fetched by LM .

7 Experiments

In this section, first we discuss our experimental setup in Section 7.1. The results
of our empirical performance evaluations of the index construction and query
processing with the proposed FCPIR framework are provided in Sections 7.2
and 7.3, respectively.

7.1 Experimental Setup

The FCPIR framework is implemented in C# and experiments are carried out
on a workstation with Intel Core-i7 3.6GHz CPU and 16GB of memory, running
Windows 10.
We tested the FCPIR framework using the Porto Taxi Dataset [5], which is a

12

real dataset and contains trajectories of 442 taxis traveling in the city of Porto,
in Portugal. The dataset was captured during a period of 11 months and includes
many features such as latitude and longitude, call type, date, etc.
We used the methods proposed in our prior work [2] to mine all frequent co-
movement patterns with µ = 15, TMAX = 8, and n = 30 from the aforemen-
tioned dataset. Then subsets of this FCPD dataset with different number of
patterns were randomly selected to be used as input for our experiments.

7.2 Index Construction

In this section, we study the performance of the TFCMP and SFCMP trees
by measuring their construction times and their compression ratio to the size
of corresponding FCPD, as the number of patterns in the dataset grows. The
results of this experiment are provided in Figures 5-a and 5-b. In both charts
the x-axis shows the number of patterns in the given FCPD, while the primary
and secondary y-axis in Figure 5-a show the construction time (in milliseconds)
for TCMP and TSPQ respectively.; finally, the y-axis in Figure 5-b shows the
compression ratios of the TFCMP and TSPQ trees to the size of given FCFD
in percentage.

Fig. 5. (a) construction time in milliseconds and (b) compression ratio percentage vs.
number of patterns in the dataset

As it can be observed in Figure 5-a, the construction times of both index struc-
tures grow linearly with the number of patterns in dataset, as expected. The
construction time of the SFCMP-tree is smaller than that of the TFCMP-tree
up to 10 orders of magnitude, since it reads patterns sequentially from the dataset
and computes their minimum frequency intervals while the TFCMP-tree needs
to scan the dataset once for each region sequence in order to find all relevant
patterns; hence more I/O time.
As illustrated in Figure 5-b, the compression ratio remains almost steady for
both trees as the size of the input dataset grows. However, TFCMP consumes

13

less storage as compared to SFCMP, since it only stores unique region sequences,
while SFCMP stores all occurrences alongside with repetitive pattern ids.

7.3 Query Processing

In this section we discuss the performance of the LM, MIF, and LM-MIF query
processing algorithms in terms of number of required I/O operations to process
queries; note that this metric is proportional to the average query response time.
For all experiments, we used an FCPD with 130K patterns with an average
support of 17 for a pattern.

Fig. 6. (a) average I/O access vs. the length of query time interval, and (b) average
I/O access vs. the size of spatial range query

7.3.1 SRPQ In this section we compare the performance of the LM query
processing algorithm with that of the basic approach, where all patterns are
scanned and fetched from the disk in a sequential manner and, those patterns
that are infrequent in Qr are filtered out. The results for this experiment are
illustrated in Figure 6-a, where the x-axis shows the size of the query Qr (in
percentage of the total size of the region of interest for the given FCPD), while
the y-axis shows the average number of I/O requests made by LM (the dashed
red line) and its ratio to the number of I/O requests made by the basic approach
(the solid orange line).
As, it can be observed in the figure, the number of I/O requests exponentially
increases with the size of Qr. This increase is mainly due to the Subset method
since each generated sub-sequence of the Qr region sequence must be looked up
in the TFCMP-tree while processing the query.

7.3.2 TRPQ For this experiment, we varied the length of query time-interval
|Qt| from 25 to 200 time units (0.5 to 20 percent of the total temporal length
of the trajectories in dataset) and compared the number of I/O requests made

14

by the MIF algorithm with the basic approach, where all patterns are scanned
and fetched from the disk, and those that are infrequent in Qt are filtered out.
The results of this experiment are illustrated in Figure 6-b, where the x-axis
shows |Qt|, while the primary y-axis (on the left) shows the average number of
I/O requests made by MIF, and the secondary y-axis (on the right) shows ratio
of the number I/O request between MIF and the basic approach. The solid red
line shows the total number of I/O requests made by MIF ; the breakdown of
this cost to the number of I/O requests to find the frequent pattern ids using
the TFCMP-tree (the dotted blue line), and the number of I/O requests caused
by fetching those patterns from the disk (the dashed green line).
As it can be observed, the performance of the MIF algorithm is mainly deter-
mined by the number of fetch requests, which exponentially increases with |Qt|.
The reason is that as |Qt| increases, the number of patterns that become frequent
increases as well; hence, more pages must be fetched from the disk. Moreover,
as shown in Figure 6-b, the number of I/O requests grows gradually between
|Qt| = 100 and |Qt| = 125. The reason is that in the used FCPD the number of
frequent patterns for |Qt| = 100 and |Qt| = 125 are not significantly different.

7.4 STRPQ

Fig. 7. Average I/O requests for STRPQ vs query time interval

In this section we compare the performance of the LM-MIF algorithm with
the basic approach, where spatial and temporal range patterns queries are pro-
cessed separately and then their results are merged together. The empirical re-
sults for this experiment are illustrated in Figure 7, where the x-axis shows |Qt|,
while the y-axis shows the average number of I/O requests made by the basic
approach (the shaded red area) and the LM-MIF algorithm (the solid blue area).
As shown in the figure, the number of I/O request made by the LM-MIF algo-
rithm (the basic approach) grows gradually (exponentially). The reason is that
the LM-MIF algorithm does not need to fetch actual patterns from the disk (as
opposed to the basic approach) and the pattern ids can be used to filter out
infrequent patterns from the result of spatial range pattern query; hence less
I/O requests.

15

8 Conclusion and Future Work

In this paper, for the first time we defined range pattern queries on frequent
co-movement pattern datasets, and proposed the FCPIR framework, including
novel index structures and query processing algorithms, for efficient processing
of various range pattern queries, namely, spatial range pattern queries, time-slice
range pattern queries, and spatiotemporal range pattern queries.
We intend to extend this work in many directions. However, as the very next
steps, we will introduce a hybrid tree structure by integrating SFCMP and
TFCMP trees to reduce the storage requirement as well as the number of I/O
requests to process spatiotemporal range pattern queries.

References

1. V. P. Chakka, A. C. Everspaugh, and J. M. Patel. Indexing large trajectory data
sets with seti. Ann Arbor, 1001(48109-2122):12, 2003.

2. S. Helmi and F. Banaei-Kashani. Mining frequent episodes from multivariate spa-
tiotemporal event sequences. In Proceedings of the 7th ACM SIGSPATIAL Inter-
national Workshop on GeoStreaming, page 9. ACM, 2016.

3. S. Laxman, P. Sastry, and K. Unnikrishnan. A fast algorithm for finding frequent
episodes in event streams. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 410–419. ACM, 2007.

4. N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W. Cheung.
Mining, indexing, and querying historical spatiotemporal data. In Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 236–245. ACM, 2004.

5. L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Pre-
dicting taxi–passenger demand using streaming data. IEEE Transactions on In-
telligent Transportation Systems, 14(3):1393–1402, 2013.

6. C. Mouza and P. Rigaux. Mobility patterns. GeoInformatica, 9(4):297–319, 2005.
7. A. Nanopoulos and Y. Manolopoulos. Efficient similarity search for market basket

data. The VLDB JournalThe International Journal on Very Large Data Bases,
11(2):138–152, 2002.

8. F. Nori, M. Deypir, and M. H. Sadreddini. A sliding window based algorithm for
frequent closed itemset mining over data streams. Journal of Systems and Software,
86(3):615–623, 2013.

9. D. Pfoser, C. S. Jensen, Y. Theodoridis, et al. Novel approaches to the indexing
of moving object trajectories. In Proceedings of VLDB, pages 395–406, 2000.

10. M. A. Sakr and R. H. Güting. Group spatiotemporal pattern queries. GeoInfor-
matica, 18(4):699–746, 2014.

11. Y. Tao and D. Papadias. Efficient historical r-trees. In Scientific and Statistical
Database Management, 2001. SSDBM 2001. Proceedings. Thirteenth International
Conference on, pages 223–232. IEEE, 2001.

12. U. Yun and G. Lee. Incremental mining of weighted maximal frequent itemsets
from dynamic databases. Expert Systems with Applications, 54:304–327, 2016.

