
Distributed storage of large knowledge graphs
with mobility data

Panagiotis Nikitopoulos, Nikolaos Koutroumanis, Akrivi Vlachou, Christos
Doulkeridis and George A. Vouros

This chapter presents novel solutions for storage and querying of large knowledge
graphs, represented in RDF, which consist of mobility data. Such knowledge graphs
are generated and updated daily based on incoming positional information of mov-
ing entities, possibly linked with contextual information and weather data. Efficient
management of knowledge graphs is critical, as it enables advanced data analysis
of integrated data and the discovery of hidden patterns of movement. Despite that
the scalable management and querying of large RDF graphs has been extensively
studied recently, most of these works do not deal with spatial or spatio-temporal
query processing. One significant factor that differentiates the knowledge graphs of
mobility data is their spatio-temporal dimension which requires special treatment.

Querying knowledge graphs of mobility data typically entail both spatial and
temporal constraints on some entities. Existing RDF engines would have to evaluate
the RDF part of the query first, and then process the spatio-temporal constraint (in a
post-processing step). However, this imposes a significant overhead, since large por-
tions of data could have been filtered by the spatio-temporal constraint, and results
in inferior performance of query processing. Motivated by these shortcomings, in
this chapter, the design and implementation of a parallel/distributed RDF engine is
presented, which targets to store and process efficiently spatio-temporal RDF data.
The main constituent parts of the engine include:

• the one-dimensional encoding scheme for mapping spatio-temporal data to one-
dimensional values,

• the storage layer of the engine that stores RDF data, but exploits the proposed
encoding for efficient indexing of spatio-temporal entities, and

• the processing layer of the engine that supports queries with spatio-temporal
and RDF constraints.

Panagiotis Nikitopoulos, Nikolaos Koutroumanis, Akrivi Vlachou, Christos Doulkeridis and
George A. Vouros
University of Piraeus, Karaoli & Dimitriou St. 80

e-mail: {nikp,koutroumanis,avlachou,cdoulk,georgev}@unipi.gr

1



2 P. Nikitopoulos, N. Koutroumanis, A. Vlachou, C. Doulkeridis and G. A. Vouros

Encoding scheme

RDF engines typically store resources and literals in the form of integers (rather
than strings), for efficient indexing and management. This is achieved by means of
an integer-encoding technique that provides a one-to-one mapping from strings to
integers (and vice-versa). As a result, the produced integer values do not carry any
semantic information, instead they just allow the retrieval of the string representing
the respective RDF resource or literal.

The intuition behind our proposed encoding scheme is to produce integer values
for spatio-temporal entities in such a way that the integer value provides some infor-
mation about the spatial and temporal information of the entity. In turn, this allows
joint ]filtering of such entities based on spatial and temporal constraints at the same
time as the RDF filtering is performed.

Thus, prior to the storage of data, the encoding step takes place for each entity.
The adopted encoding scheme is applied on the spatio-temporal information of the
moving entities. The discrete spatial and temporal information is mapped into an
integer value which represents a part of the 3D space with specific spatial and tem-
poral bounds. The spatial location can be in 2D (for cars, vessels, etc.) or 3D (for
aircraft). Only the 2D case is presented in the following for simplicity. The mapping
of the spatial location is based on the grid partitioning method, where space is split
into 2m = (2m/2 ·2m/2) equi-sized cells. Also, a space-filling curve is exploited, pro-
viding an ordering for the spatial cells of the grid. In Figure 1, Hilbert and Z-order
curves are depicted, with an integer value (ID) assigned to each cell. The integer
value is determined by the ordering defined by the employed space-filling curve, in
order to achieve spatial locality, i.e., entities that are located nearby in the 2D space
are assigned similar integer values.

Fig. 1: Space-filling curves (Hilbert and Z-order) used for ordering the spatial
cells.

In order to add the temporal dimension, the temporal domain is partitioned into
temporal intervals T = {T0,T1, . . .} where Ti represents a time span. Temporal par-



Distributed storage of large knowledge graphs with mobility data 3

titions are disjoint and can vary, covering the entire time domain (
⋃

Ti = T ). Each
temporal partition Ti is associated with a spatial grid, as depicted in the figure. The
only restriction is that the identical grid structure (i.e., 2m equi-sized cells) is used
for all temporal partitions Ti.

Both spatial and temporal partitions are combined together, resulting to a unique
identifier for any spatio-temporal position of a moving entity. The representation
of the identifier is depicted in Figure 2, where it consists of b bits. The k least
significant bits are used as unique identifier of any spatio-temporal entity in a spe-
cific spatio-temporal cell. The ID of the cell which represents its spatial part, is
recorded in the next m bits. The most-significant bit is reserved so as to discern be-
tween spatio-temporal RDF entities and other RDF entities. Specifically, the most-
significant bit is set to 0 for all IDs of spatio-temporal RDF entities, while for IDs of
all other RDF entities is set to 1. The remaining b− (m+k+1) bits are used for the
temporal representation, thus 2b−(m+k+1) temporal partitions can be stored in total.

Fig. 2: IDs encoding using bits: b total bits, m bits for spatial part (cell id), k bits
for uniqueness, b− (m+ k+1) bits for the temporal partition.

Given the ID of a spatio-temporal entity, the 3D spatio-temporal cell where the
entity belongs to can be identified. The same applies reversely; given a 3D cell, a
range of IDs that correspond to any entity belonging to the cell can be computed.
The encoding scheme guarantees data locality, meaning that entities with similar
spatio-temporal representations are assigned nearby IDs (that belong to small ranges
of values).

DiStRDF Storage Layer

Concerning the storage layer, the proposed solution was designed for operating
on distributed environment. This scalable storage solution supports replication, in-
memory lookups, indexing, compression and efficient query execution. Even in the
case of hardware failures on some nodes of the cluster, the availability of the stored
data will be unaffected. The storage layer consists of two data stores: (a) a dictio-
nary which stores the mappings between RDF triples and their encoded values, and
(b) the RDF data store which contains the encoded RDF triples stored in HDFS.

For the DiStRDF dictionary, it is essential to support efficient lookups and hori-
zontal scalability. Thus, the attention is given to distributed key-value NoSQL stores
which are designed for storing, retrieving and managing dictionaries or hash tables.



4 P. Nikitopoulos, N. Koutroumanis, A. Vlachou, C. Doulkeridis and G. A. Vouros

A key-value NoSQL store is a distributed data structure that contains sets of key-
value pairs. The store is responsible for storing those pairs and retrieving the corre-
sponding value when a key is provided. DiStRDF leverages Redis (https://redis.io/)
for storing the dictionary, but any other key-value store can be used.

The design of the distributed RDF data storage covers several aspects, such as
compression, file layout, data organization, indexing and partitioning. The DiStRDF
store organizes the RDF triples in encoded form. RDF triples are transformed to
encoded integer values and are stored in an HDFS cluster. Each node of the cluster,
maintains the spatio-temporal information in Property tables as shown in Table 1.
Property tables show good performance when a group of properties always exists
for a given resource, thereby avoiding the need of costly joins to reassemble this
information. Along with the Property tables that are stored across the nodes, another
table is used for storing RDF data (leftover triples) that is not associated with spatio-
temporal information. This table is used as a regular triples data store, which stores
subject, predicate and object in three different columns. Table 2 depicts an example
of a leftover triples table, where non spatio-temporal information is stored, such as
event occurrence and static information about vessels.

Both tables are stored in Parquet formatted files, which is a column-based data
layout with native support for several compression codecs (lzo, gzip, snappy). Par-
quet formatted data sets are usually split into several files where every file contains
a set of metadata such as ranges of values for every column of the file. This meta-
data can significantly boost query performance, e.g., in case a query retrieves few
columns of a property table. Predicate and projection pushdown are also features
supported by Parquet, which avoids the cost of reading all data from disk at query
time.

The partitioning mechanism used in DiStRDF storage layer partitions the data
according their spatio-temporal similarity. More specifically, the 1D encoded inte-
gers computed for the spatio-temporal data are used for their distribution across the
available nodes based on range partitioning.

Node ofMovingObject hasHeading hasGeometry hasTemporalFeature
node15 ves376609000 15 15.3W 47.8N 2017-01-03 02:20:05
node22 ves369715600 0 19.4E 35.9N 2017-01-30 17:20:00
node58 ves376609000 3 23.2E 35.7N 2017-02-05 10:42:08

Table 1: RDF property table example.

DiStRDF Processing Layer

The DiStRDF processing layer interacts with the storage layer, so as to efficiently
retrieve the query-relevant data. The processing layer is a SPARQL query engine
that processes batch queries over huge amounts of spatio-temporal RDF data. It



Distributed storage of large knowledge graphs with mobility data 5

Subject Predicate Object
turnInit occurs node22

stoppedInit occurs node15
ves376609000 hasBuildDate 2009-05-31

Table 2: RDF leftover triples example.

is implemented on Apache Spark, a popular engine for parallel in-memory data
processing based on the MapReduce model. The processing layer is comprised of
the following components: (a) the SPARQL Query Parsing, (b) the Logical Plan
Builder, (c) the Logical Plan Optimizer and (d) the Physical Plan Constructor.

The SPARQL Query Parsing component is in charge of performing the pars-
ing task of the query. It checks the correctness its syntax and transforms it into an
internal representation, used by the other modules of the processing engine. Assum-
ing that the syntax is correct, the SPARQL query is translated into a set of basic
graph patterns (BGP). These graph patterns are given to the logical planner so as to
construct a logical query plan. The query parsing component is built using the func-
tionality of the Apache Jena software so as to obtain the BGPs from the SPARQL
query.

The Logical Plan Builder constructs a logical plan of the query, after having been
parsed by SPARQL Query Parsing component. The logical query plan consists of
logical operators ordered in hierarchical form (tree). Specifically, the logical plan
represents a way to execute the respective SPARQL query.

The Logical Plan Optimizer, performs optimizations in the logical plan of a
query. Optimizations are classified as rule-based or cost-based. In rule-based op-
timization, a set of rules is applied on join operators in order to be exploited during
physical for performing the query in a more efficient way. In cost-based optimiza-
tion, the formation and the ordering of join operators are determined based on statis-
tics (histograms).

The Physical Plan Constructor component takes as input the optimized logical
plan and transforms it to a physical query plan. A physical query plan is comprised
of a set of physical operators, which represent an algorithm for every stage (oper-
ation) of the query execution. Hence, the physical plan constructor aims to choose
the best performing algorithm for every stage of the query execution. All operators
are designed to operate by utilizing the features of Apache SparkSQL API. They
process a distributed set of data (i.e., a Spark DataFrame) by performing parallel
operations on it. Therefore, the workload of any DiStRDF physical operator is in
fact distributed among the available computing nodes to be computed in parallel.


