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Link discovery (LD) is the process of identifying relations (links) between entities
that originate from different data sources, thereby facilitating several tasks, such as
data deduplication, record linkage and data integration. Existing LD frameworks fa-
cilitate data integration tasks, overmultidimensional data. However, limitedwork has
focused on spatial or spatiotemporal LD, which is typically much more processing-
intensive due to the complexity of spatial relations. This chapter targets spatiotem-
poral link discovery, focusing on topological and proximity relations, proposing a
framework with several salient features: support both for streaming and archival data,
support of spatial relations in 2D and 3D, flexibility in terms of input consumption,
improved filtering techniques, use of blocking techniques, proximity-based LD in-
stead of merely topological LD, and a data-parallel design and implementation. The
efficiency of the proposed spatiotemporal LD framework is demonstrated by means
of experiments on real-life data from the maritime and aviation domains.

Data integration is a critical task for applications managing data that originates
from different and often heterogeneous data sources. In the current era data of
massive volume that are often generated at unprecedented rates in the form of data
streams, and in different representation models, formats and modalities, big data
integration raises additional challenges.
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One significant step to facilitate data integration is link discovery, which is defined
as the process of identifying relations (links) between entities/objects that originate
from different data sources. Different applications of link discovery tasks include:

• (Record linkage between data sources): Consider a merge taking place between
two companies, which requires that their customer databases need to be recon-
ciled. Customers are described by their names and identifying common customers
requires joining records based on alphanumeric values (names). However, in prac-
tice, using exact matching does not work sufficiently well, due to various reasons,
such as spelling errors (e.g., “Jon Smith” vs. “John Smith”), use of middle name
(e.g., “George Vouros” vs. “George A. Vouros”), etc. Therefore, approximate
matching techniques (a.k.a. approximate or fuzzy joins) are required, which con-
stitute a special case of link discovery between entities.

• (Entity resolution): Consider two different data representations corresponding to
two entities, where the problem is to determine if the two entities are identical.
For instance, a Wikipedia page describing an athlete and a record in a table of a
relational database of athletes. The problem is to discover that two entities refer
to the same real-world object.

• (Deduplication): Consider the case of two persons that perform data entry using
different naming conventions. In this case, we may encounter multiple records
that are not identical, yet they refer to the same object. As a representative example
one can think of “Los Angeles” vs. “LA”, “fifth avenue” vs “5th avenue”, etc.

In order to support application scenarios such as the above, efficient and effective
link discovery techniques are sought. This book chapter focuses on a special case of
link discovery, where the underlying data sets are of spatiotemporal nature and the
relations to be discovered are also spatial or spatiotemporal. Specifically, we present
the design and implementation of a generic link discovery framework tailored for
spatiotemporal data. We present its extensible design and flexibility in terms of
supported spatiotemporal data types and relations and we outline a state of the art
method for link discovery of topological relations. We further present improvements
that apply to certain cases of spatiotemporal data and may lead to performance gains,
as well as methods for proximity-based link discovery. The presented methods also
consider the case of more complex geometries, such as polylines.

The generic architecture of the stLD framework is illustrated in Figure 1. Its
input is two data sources (not necessarily disjoint) represented in RDF format. The
output of stLD is also provided in RDF and can be either: (a) only the linked entities
discovered, or (b) the linked entities concatenated with the input RDF fragment. The
first option allows to decouple the processing of input data sets from the processing
of discovered links, and reduces the overall link discovery time. The second option
provides synchronized and sequential RDF fragments to the output, which is bene-
ficial for certain applications that need to process enriched input entities (i.e., with
additional spatiotemporal links and properties).

The stLD framework follows the filter-and-refinemethodology for performing the
link discovery task. In the filtering step, a blocking method is employed to drastically
reduce the number of candidate pairs of entities, whereas in the refinement step
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Fig. 1 High-level architecture of the spatiotemporal link discovery framework stLD.

the candidate pairs need to be examined to check if they satisfy the relation of
interest. The methods presented in this chapter assuming an equi-grid, i.e., a grid
constructed by cells of equal size. The blocking method is responsible to detect the
cells that enclose the spatial representation of a given entity. Doing so, links are to
be investigated only between entities blocked in the same cell.

Consider a spatial representation σ in a data source S of an entity that overlaps
with one or more cells and k spatial representations {τ1, . . . , τk} in the data source
T that also overlap with the given cell. Our observation is that if σ is disjoint to all
the spatial representations in {τ1, . . . , τκ} in this cell, then we can safely infer that
there are no topological relations (with the exception of “disjoint”) to be discovered
in this cell between σ and any spatial representation in {τ1, . . . , τκ}. Motivated by
this observation, we propose in this chapter the MaskLink technique to explicitly
represent the empty space within cells as yet another spatial representation. Thus,
for each grid cell c, we construct an artificial polygon called mask of c, which is
defined as the difference between the cell c and the union of spatial representations
{τ1, . . . , τκ} overlapping with the cell. We also show that by having the mask of a cell
as yet another spatial representation, we can devise an efficient algorithm for link
discovery that eagerly avoids comparisons to geometries for spatial representations
enclosed in the mask of a cell. For the typical case where a cell contains several
spatial representations, this technique prunes several candidate pairs of entities,
saving computational time in the refinement step of the LD process. The MaskLink
technique is applicable also for link discovery of proximity relations between spatial
representations of entities in S and T.

We also discuss an improvement on the blocking method, namely the refined
blocking, where the minimum necessary set of cells is computed that are needed
to cover any given polyline, w.r.t. the granularity of the grid. The general idea
of the method is to compute the cells for each point of the polyline, and for the
case of closed geometries, the cells for all the interior points. This approach will
provide the minimum necessary cells to cover the polyline (the proof is trivial).
A naive implementation would be to iterate all the points of the given polyline
(including the interpolated points with respect to the grid granularity) and compute
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the corresponding cells. This method however would result to linear complexity to
the number of points in a polyline, which will be costly for polylines consisting of
many points.

The proposed “refined blocking” method recursively segments the polyline and
terminates when both ends of the segment are within the same cell. This method
has linear complexity to the number of cells that will be used for the geometry
with respect to the grid granularity. The cost of refined blocking is not higher than
the cost of using simply the MBR of the geometry, since the computation of MBR
iterates through all the points of the geometry to decide the minimum and maximum
latitude/longitude values of the MBR. On the other hand, the proposed method has
a worst-case scenario of iterating all the points (i.e., the case where each point of the
geometry should be placed in a separate cell with respect to the grid granularity).

This chapter reports experimental results on topological and proximity relations
using themethods presented.We compare theMaskLink technique for all topological
relations to RADON using the data sets CLC and NUTS. RADON requires that the
entire data sets are loaded in memory, which may not always be possible for all use
cases of LD. We overcome this memory limitation, by loading NUTS (as the smaller
data set) in memory, and accessing CLC in batches of lines. For a fair comparison of
techniques, we repeat the same procedure for MaskLink, although it can be directly
applied on the given data sources.

We observe that the MaskLink is using less memory compared to RADON and
it consistently outperforms RADON. When comparing MaskLink to a typical grid
based implementation (namely the baseline), we observe that the gain achieved by
MaskLink increases with the size of the data source, indicating that large instances
of the problem cannot be efficiently solved by the baseline algorithm.

Regarding proximity relations, MaskLink outperforms the baseline consistently,
but this time by a much larger margin, since the problem of proximity link discovery
is harder in general. It is very significant to notice that the baseline is not scalable for
this problem, as it does not terminate in reasonable time when the input size is larger
than 1,500K. In contrast, MaskLink scales gracefully with the size of input data.


