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Abstract Air Traffic Management is facing a change of paradigms looking for
enhanced operational performance able tomanage increasing traffic demand (number
of flights and passengers) while keeping on improving safety, and also remaining
environmentally efficient, among other operational objectives. In order to do this,
new concepts of operations are arising, such as Trajectory Based Operations, which
open many new possibilities in terms of system predictability, paving the way to the
application of big data techniques in the Aviation Domain. This chapter presents the
state of the art in these matters.

1 Motivation

The current Air TrafficManagement (ATM) system worldwide has reached its limits
in terms of predictability, efficiency and cost effectiveness. Nowadays, the ATM
paradigm is based on an airspace management that leads to demand imbalances that
cannot be dynamically adjusted. This entails higher air traffic controllers’ (ATCO)
workload, which, as a final result, determines the maximum system capacity.

The effects of collapsed sectors can be observed, for instance, in the yearly
Performance Review Report, addressed by EUROCONTROL Performance Review
Commission,which allocates a high share of the overallAir TrafficFlowManagement
(ATFM) delays to this reason (over 90% in some airspaces). It was significantly bad
in 2018 when AFTM delays across Europe more than doubled, due to the increase
in traffic among other factors, a trend expected to keep. In general, all performance
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analysis and studies lead to the idea that the ATM system is very close to, or already
at, a saturation level.

With the aim of overcoming such ATM system drawbacks, different initiatives,
dominated by Single European Sky ATM Research SESAR in Europe and Next Gen
in the US, have promoted the transformation of the current environment towards
a new trajectory based ATM paradigm. This paradigm shift changes the old fash-
ioned airspace management to the advanced concept of Trajectory Based Operations
(TBO). In the future ATM system, the trajectory becomes the cornerstone upon
which all the ATM capabilities will rely on. The trajectory life cycle describes the
different stages from the trajectory planning, negotiation and agreement, to the tra-
jectory execution, amendment and modification. The envisioned advanced Decision
Support Tools (DSTs) required for enabling future ATM capabilities will exploit tra-
jectory information to provide optimized services to all ATM stakeholders (airlines,
Air Navigation Service Providers (ANSPs), Air Traffic Control (ATC), etc.).

The vision of the futureATMsystemevolving towards higher levels of automation,
as a key driver to enhanced ATM performance, is expressed in successive releases
of the European ATM Master Plan. This emerges both, as a mid-term need (with
EUROCONTROL asNetworkManager forecasts increases in traffic of +50% in 2035
compared to 2017, meaning 16 million flights across Europe) and as a long-term
need (2035+).

Effective automation that will enable an increase in capacity is considered one of
the pillars of futureATM, but thismeans facing some difficulties and challenges. This
has been evident in recent times with some potentially optimistic implementation of
automation features, which allegedly may have impacted the situational awareness
and reaction capabilities of the operators.

Complementarily, new opportunities have arisen for the enhancement of the ATM
approach to automation, in particular with the widespread introduction of Artificial
Intelligence/Machine Learning (AI/ML) techniques in society in general. These
techniques bring to the ATM research domain new opportunities, in particular as
key enabler to reach the necessary higher levels of automation required.

Towards reaching the targeted objectives, predictability is considered as the main
driver to enhance operational performance key performance areas (KPAs), such as
capacity, efficiency, and even safety. Trajectory prediction, in particular within the
TBO concept of operations, is the paramount enabler for this new stage of ATM
operations. This chapter addresses the state of the art, as well as the main operational
scenarios where these capabilities bring significant benefits.

2 Trajectory prediction and Data sources

Current Trajectory Predictors (TPs) are based on deterministic formulations of the
aircraft motion problem. Although there are sophisticated solutions that reach high
levels of accuracy, all approaches are intrinsically simplifications to the actual air-
craft behaviour, which delivers appropriate results for a reasonable computational
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cost. TPs outputs are generated based on apriori knowledge of the planned flight
plan, the expected command and control strategies released by the pilot or the Flight
Management System (FMS) - to ensure compliance with Air Traffic Control (ATC)
restrictions and user preferences (all together known as aircraft intent), a forecast
of weather conditions to be faced throughout the trajectory, and the aircraft perfor-
mance. This model or physics based approach is deterministic: It returns always the
same trajectory prediction for a set of identical inputs.

Although the use of the concept of Aircraft Intent [1] together with very precise
aircraft performance models such as Base of Aircraft Data (BADA) [2] has helped
to improve the prediction accuracy, the model based approach requires a set of input
data that typically are not precisely known (i.e. initial aircraft weight, pilot/FMS
flight modes, etc.). In addition, accuracy varies depending on the intended prediction
horizon (look-ahead time). In summary one can identify current TP as an area of
improvement with consequent benefits supporting TBO.

Recent efforts in the field of aircraft trajectory prediction have explored the
application of statistical analysis and machine learning techniques to capture non-
deterministic influences that arise when an aircraft trajectory prediction is requested
by a DST. Linear regression models [3] [4] or neural networks [5] [6], have returned
successful outcomes for improving the trajectory prediction accuracy on the vertical
plane and for traffic flow forecasting. Generalized Linear Models [7] have been
applied for the trajectory prediction in arrival management scenarios and multiple
linear regression [8], [9] for predicting estimated times of arrival (ETA). Although
most of these efforts include as input dataset the available surveillance data, there
is no consensus on the additional supporting data required for robust and reliable
trajectory predictions. Such additional supporting data may include filed or amended
flight plans, airspace structure, ATC procedures, airline strategy, weather forecasts,
etc.

The outcome of these recent efforts provide promising results in terms of accuracy
prediction [10], however there is still a lack of global vision on how to apply data
driven approaches to real ATM scenarios, and what the expected improvement will
be. The disparity of the datasets used for validating different methods makes difficult
the comparison among those studies, and therefore, prevents from extending the
applicability of such techniques to more realistic and complex scenarios.

This chapter reviews prominent trajectory prediction approaches in a comprehen-
sive way and presents data sources that can be exploited for data-driven trajectory
predictions.

A main drawback of data driven TP based on surveillance datasets is the low
granularity and diversity of available data. Even considering ADS-B or QAR, which
contain broader information than typical latitude-longitude-altitude-time included in
radar tracks, the availability of accurate information about airspeeds, ground speed
is almost ineffective, while there is no availability of the aircraft mass, which is the
key state variable to compute other related kinetic state variables.

However, making use of the Aircraft Intent (AI) instance inferred from the raw
data, as this chapter explains, it is possible to launch an aircraft mass inference and a
trajectory reconstruction process [22][23] that populates the state vector with times
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(increased granularity) and state variables (state vector enrichment) not included in
the original surveillance based trajectory representation.

3 Aviation operational scenarios and challenges

To address the ATM challenges, the knowledge of more accurate and more pre-
dictable trajectories is needed. Thus, the more accurate and rich information on
trajectories and related events we have, and as we increase our abilities to predict
trajectories and forecast events regarding moving entities’ behaviour, we advance
situational awareness, and consequently the decision making processes.

Towards this objective, this chapter elaborates on three important ATM scenarios,
as follows:

• Regulations detection and prediction
• Demand and capacity imbalance detection and prediction
• Trajectory prediction - preflight
• Trajectory prediction - real time

References

1. J. Lopez Leones, M. Vilaplana, E. Gallo, F. Navarro and C. Querejeta, “The Aircraft In-
tent Description Language: A key enabler for air-ground synchronization in Trajectory-Based
Operations”, in IEEE/AIAA 26th Digital Avionics Systems Conference, 2007.

2. BADA, Base of Aircraft Data, “https://simulations.eurocontrol.int/solutions/bada-aircraft-
performance-model/” [Online].

3. M. G. Hamed and et al., “Statistical prediction of aircraft trajectory: regression methods vs
point-mass model”, 10th USA/Europe Air Traffic Management Research and Development
Seminar (ATM 2013), 10 June 2013 - 13 June 2013.

4. W. Kun and P. Wei, “A 4-D trajectory prediction model based on radar data”, in 27th Chinese
Control Conference, 16 July 2008.

5. Y. Le Fablec and J.M. Alliot, “Using Neural Networks to Predict Aircraft Trajectories”, in
IC-AI, 1999.

6. T. Cheng, D. Cui and P. Cheng, “Data mining for air traffic flow forecasting: a hybrid model of
neural network and statistical analysis”, Proceedings of the 2003 IEEE International Conference
on Intelligent Transportation Systems, Vol 1, pp 211–215, 2003.

7. A. M. P. de Leege, M. M. Van Paassen, and M. Mulder, “A Machine Learning Approach to
Trajectory Prediction", AIAA Guidance, Navigation, and Control (GNC) Conference August
19-22, Boston MA, 2013.

8. K. Tastambekov et al., “Aircraft trajectory forecasting using local functional regression in
Sobolev space”, Transportation research part C: Emerging Technologies, vol. 39, pp. 1-22,
2014.

9. S. Hong and K. Lee,“Trajectory Prediction for Vectored Area Navigation Arrivals”, Journal of
Aerospace Information Systems, Vol. 12, pp 490-502, 2015.

10. S. Yue, P. Cheng and C. Mu, “An improved trajectory prediction algorithm based on trajec-
tory data mining for air traffic management”, in International Conference of Information and
Automation (ICIA), 6 June 2012.



The Perspective on Mobility Data from the Aviation Domain 35

11. M. G. Hamed, et al. “Statistical prediction of aircraft trajectory: regression methods vs point-
mass model", 10th USA/Europe Air Traffic Management Research and Development Seminar
(ATM 2013), 2013.

12. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, “MOA: Massive online analysis”, Journal of
Machine Learning Research, Vol 11, pp. 1601-1604, 2010.

13. . C. Gong, and D. McNally, “A methodology for automated trajectory prediction analysis",
AIAA Guidance, Navigation, and Control Conference and Exhibit. 2004.

14. Y. Yang, J. Zhang, and Kaiquan Cai, “Terminal area aircraft intent inference approach based
on online trajectory clustering", The Scientific World Journal, Vol 2015, 2015.

15. J.L. Yepes, I. Hwang, and Mario Rotea, “New algorithms for aircraft intent inference and
trajectory prediction", Journal of guidance, control, and dynamics, Vol 30.2 pp 370-382, 2007.

16. N. Zorbas, D. Zissis, K. Tserpes, D. Anagnostopoulos, “Predicting Object Trajectories from
High-Speed Streaming Data”, Proceedings of IEEE Trust-com/BigDataSE/ISPA, pp. 229-234,
2015.

17. S. Ayhan, H. Samet, “Aircraft Trajectory Prediction Made Easy with Predictive Analytics”,
Proceedings of ACM SIGKDD, pp. 21-30, 2016.

18. S. Mondoloni and S. Swierstra, “Commonality in disparate trajectory predictors for air traffic
management applications", IEEE/AIAA 24th Digital Avionics Systems Conference, 2005.

19. L.J. Lopez Leones, “Definition of an aircraft intent description language for air traffic man-
agement applications", PhD thesis, University of Glasgow, 2008.

20. M. A. Vilaplana et al, “Towards a formal language for the common description of aircraft
intent", IEEE/AIAA 24th Digital Avionics Systems Conference, 2005.

21. M. La Civita, “Using aircraft trajectory data to infer aircraft intent, U.S. Patent No. 8,977,484.
10 Mar. 2015.

22. P. D. Luis and M. La Civita, “Method and system for estimating aircraft course", U.S. Patent
Application No. 14/331,088, 2015.

23. L. D’Alto, M. A. Vilaplana, L. J. Lopez and M. La Civita, “A computer based method and
system for estimating impact of new operational conditions in a baseline air traffic scenario",
European Patent No. EP15173095.9. 22 June 2015.

24. Y. Zheng, “Trajectory Data Mining: An Overview”, ACM Trans. on Intelligent Systems and
Technology, Vol.6, No.3, Sept.2015.


	Part I Time Critical Mobility Operations and Data: A Perspective from the Maritime and Aviation Domains
	Mobility Data: A Perspective from the Maritime Domain 
	The Perspective on Mobility Data from the Aviation Domain
	Jose Manuel Cordero and David Scarlatti 
	Motivation
	Trajectory prediction and Data sources
	References
	References







