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1 Motivation

Concerning the analysis of mobility data, mobility data analytics aim to describe the
mobility of objects, to extract valuable knowledge by revealing motion behaviors or
patterns, to predict future mobility behaviors or trends and in general, to generate
various perspectives out of data, useful for many other scientific fields. An important
operation when trying to extract knowledge out of mobility data is cluster analysis,
which aims at identifying clusters of moving objects, as well as detecting moving
objects that demonstrate abnormal behavior and can be considered as outliers. Sev-
eral efforts try to identify patterns that are valid for the entire lifespan of the moving
objects [2, 5, 1]. However, discovering clusters of complete trajectories can over-
look significant patterns that might exist only for some portions of their lifespan,
which motivates us to try deal with the problem of subtrajectory clustering. What
is even more challenging is to trying to deal with this problem in the Big Data era,
which calls for parallel and distributed algorithms in order to address the scalability
requirements. In this context, one challenge is how to partition the data in such a
way so that each node can perform its computation independently, thus minimizing
the communication cost between nodes, which is a cost that can turn out to be a se-
rious bottleneck. Another challenge, related to partitioning, is how to achieve load
balancing, in order to balance the load fairly between the different nodes. Yet an-
other challenge is to minimize the iterations of data processing, which are typically
required in clustering algorithms.

In geospatial analysis, a hotspot is a geographic area that contains unusually high
concentration of activities (e.g. moving objects). Trajectory hotspot analysis is a
special case of geospatial analysis, which discovers spatio-temporal regions having
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high concentration of moving trajectories. Motivated by the need for big data an-
alytics over trajectories of vessels, we focus on discovering trajectory hotspots in
the maritime domain, as this relates to various challenging use-case scenarios. For
example, having a predefined set of regions of interest, for which there is a priori
knowledge about occurring activities in them, it is very useful to be able to analyze
(a) the intensity of the fishing activity (i.e., fishing pressure) of the areas, or (b) to
quantify the environmental fingerprint by the passage of a particular type of vessels
from the areas. Similar cases exist in all mobility domains. Thus, the effective dis-
covery of such diverse types of hot spots is of critical importance for our ability to
comprehend the various domains of mobility.

Inference of the underlying network given a large number of moving traces, both
in aviation and maritime domain is a challenging task that we try to address. The
goal is to discover the directed graph of transitions, i.e., the set V of vertices and
the set E of edges that form the routes network. Additionally, enriched information
has to be taken into account in order to produce an enriched graph with contextual
information. Domain experts may benefit a lot from such additional information.
For example, one can then easily produce analytics of trajectories based on specific
weather conditions and reveal how these conditions affecting or not the paths fol-
lowed. Moreover, flight plans or predefined sea routes can be compared with real
paths followed by ships or planes and the domain expert would be able to identify
and explain the reason more easily.

2 Distributed (Sub)Trajectory Clustering

Our approach to distributed subtrajectory clustering [7] splits the problem in three
steps. The first step is to retrieve, in a distributed way, for each trajectory r ∈ D,
all the moving objects, with their respective portion of movement, that moved close
enough in space and time with r, for at least some time duration. This is a well-
defined problem in the literature of mobility data management, known as subtra-
jectory join [6] (the case of self-join). The subtrajectory join will return for each
pair of (sub)trajectories, all the common subsequencies that have at least some time
duration, which are actually candidates for the longest common subsequence. The
second step takes as input the result of the first step and aims at segmenting, in a dis-
tributed fashion, each r ∈ D into a set of subtrajectories D′. In our case, the way that
a trajectory is segmented into subtrajectories is neighbourhood-aware, meaning that
a trajectory will be segmented every time its neighbourhood changes significantly.
Finally, the third step takes as input D′ and the goal is to identify, in a distributed
manner, clusters (whose cardinality is unknown) of similar subtrajectories and at
the same time identify subtrajectories that are significantly dissimilar from the oth-
ers (outliers). To illustrate the quality of the results we employed the IFS (April
2016) (Figure 1(a)). Figure 1(b), depicts the results of the subtrajectory clustering
algorithm and Figure 1(d) the corresponding space-time cube. The algorithm iden-
tified 6 clusters, 3 clusters from Madrid to Barcelona and 3 clusters from Barcelona
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to Madrid. Moreover, an outlier was detected, which is not something common in
aviation data.

(a) (b) (c)

Fig. 1 (a) Raw data, (b) cluster representatives (6 clusters discovered), (c) cluster representatives
space time cube

3 Distributed Hotspot Analysis

The problem of discovering trajectory hotspots over distributed sets of data is stud-
ied in [3], where two algorithms are proposed, namely T HS and aT HS for effi-
ciently discovering trajectory hotspots in parallel. This approach is based on spatio-
temporal partitioning of the 3D data space in cells. Accordingly, it tries to identify
cells that constitute hotspots, i.e., not only do they have high density, but also that
the density values are statistically significant. To this end, it employs the Getis-Ord
statistic [4], a popular metric for hotspot analysis, which produces z-scores. The
Getis-Ord statistic uses attribute values to provide z-scores for each cell. The at-
tribute values represent the density of moving trajectories inside a specific cell. A
formal definition of a cell’s attribute value is provided in [3], which is based on the
duration that an object is moving in the cell divided by the total lifespan of that cell.
This definition implies that an attribute value is increased by having more vessels
moving for longer duration in the cells of interest. The Getis-Ord statistic calculates
a z-score for a cell by aggregating its attribute value with the attribute values of all
the other cells of interest. A weight factor is used which determines the effect of a
cell’s attribute value to the z-score calculation of a neighboring cell. It represents the
score influence between neighboring cells: a cell needs to have a neighborhood of
high attribute values to be considered as hotspot. The goal is to have the influence of
neighboring cells to be decreasing with increased spatio-temporal distance. Thus the
study employs a weight function that decreases exponentially with increasing dis-
tance. aT HS algorithm is able to constraint the influence distance, since for longer
distances the influence becomes increasingly low. Hence, aT HS approximates the
final result, by providing analytical error bounds.

Fig. 2 demonstrates the top-50 hot-spots discovered by T HS algorithm for a data
set covering the Brest area, based on a user-defined grid. Each hot-spot is a region
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(a) (b)

Fig. 2 Hot-spots on (a) large regions and (b) small regions.

defined by a rectangular cell, which is part of the grid provided for the entire data
set. The size of the cells in Fig. 2(a) is 0.05 degrees in both longitude and latitude
dimensions, while in Fig. 2(b) the cell size is configured to be 0.01 degrees

In the experimental section of [3], the proposed approach is evaluated over a real
set of data containing surveillance information from the maritime domain. The data
was collected over a period of three years, consisting of individual trajectories for
vessels moving in the Eastern Mediterranean Sea. The efficiency of the proposed ap-
proach is affected mainly by the neighborhood influence calculation step. However,
due to aT HS ability to constraint the influence distance, the proposed approach cal-
culates an approximate result in reasonable time, while providing error guarantees.

4 Distributed Data-enriched Mobility Networks

We follow an approach where first the vertices are discovered and then edges con-
necting these vertices are inferred from the trajectories. The input to the process
comprises of a set of enriched trajectories. An enriched trajectory is modeled as a
sequence of time-stamped enriched points. The output of the process is a semantic
aware mobility network modeled as a directed graph G = (V,E), where the vertices
V correspond to semantic nodes and the edges E correspond to the discovered paths
between semantic nodes.

The process comprises two main steps, Enriched-nodes-extraction and Enriched-
paths-discovery. Figure 3 illustrates the Enriched nodes extraction step, while the
Enriched paths discovery step is depicted in Figure 4.

Data-driven contextually aware inference of transportation network map is the
main outcome of the proposed methodology. From the qualitative evaluation, it can
be concluded that first, the higher the weight of the edges the higher the compact-
ness in the representation of the dataset with this data-enriched network structure.
Second, the network extracted from synopses is more or less the same as the one
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(a) (b) (c)

Fig. 3 Overview of network nodes extraction step in maritime domain: (a) all enriched points from
input, (b) enriched points clustered spatially to candidate nodes (c) semantic nodes extraction.

(a) (b)

Fig. 4 Overview of network paths discovery step in maritime domain: (a) all paths found (b) only
edges with more than σ weight are kept.

produced by the raw data. The advantage of this is that not only we may extract
the network by processing much less data, but more importantly, we gain from the
contextual characterization of the synopses to attach semantics to the vertices of the
network. The algorithms proposed provide contextually enhanced spatial graphs,
which can successfully be utilized to support online location and trajectory predic-
tion/forecasting scenarios. Moreover, the methodology is able to produce networks
of high accuracy, which closely resemble the structure and topology of the underly-
ing ground truth networks.

5 Contributions

Our main contributions, concerning the Distributed Subtrajectory Clustering prob-
lem, we formally define the problem of Distributed Subtrajectory Clustering (DSC)
and propose two neighborhood-aware trajectory segmentation algorithms, which are
tailored to DSC problem, covering different application requirements. Further, we
design an efficient and scalable solution for the problem of Distributed Subtrajec-
tory Clustering. Our experimental study, demonstrates the merits of our solution.

Regarding the problem of distributed trajectory hotspot analysis, we define the
problem of trajectory hotspot analysis, as a special case of geospatial hotspot anal-
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ysis, appropriately tailored to become meaningful for trajectories, rather than plain
points. We presents two parallel algorithms for efficiently discovering trajectory
hotspots in parallel over distributed sets of trajectory data. The first algorithm cal-
culates the exact result, while the second improves the efficiency by providing an
approximate result, limited by error bounds. Finally, we provide an efficiency and
scalability emprical evaluation, by experimenting with real vessel trajectory data.

Concerning the distributed data-enriched mobility networks problem, we intro-
duce a novel contextually aware network construction methodology that operates
on annotated and durative critical points (synopses) which accurately represent the
real motion of the vessels and aircraft. This contextually aware approach enables to
combine new sea portions or flight routes due to incidents and updates. During the
above process, we introduce a parameter less algorithm around critical points based
on semantic similarity, which allows to create semantic nodes based on the avail-
able data by using sets of trajectories that belong to the same critical points category.
We present a detailed validation study of our method, using real-world vessels and
aircraft tracking data, which demonstrates the efficiency of the proposed method.
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